
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

AN EXPLICIT LAGRANGIAN APPROACH FOR 3D
SIMULATION OF FLUID-STRUCTURE-INTERACTION

PROBLEMS

S. Meduri1, M. Cremonesi1 and U. Perego1

1 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
massimiliano.cremonesi@polimi.it

Key words: FSI, PFEM-FEM Coupling, Explicit Solver, Lagrangian Formulation

Abstract. A Lagrangian fully explicit approach for the co-simulation of three-dimensional
problems of Fluid-Structure Interaction (FSI) is here presented. The fluid domain is mod-
elled as a weakly compressible material through an explicit version of the Particle Finite
Element Method (PFEM). The structure is modelled with standard FEM through the
commercial software Abaqus/Explicit. The strong coupling of the partitioned approach
is ensured by the Gravouil and Combescure (GC) algorithm. The GC scheme allows for
the use of incompatible space-time discretizations in the two subdomains. The coupling
problem leads to a small explicit system of decoupled equations when conforming meshes
are used at the interface, while, in the case of non-conforming meshes, a weakly coupled
system is obtained.

A novel and efficient mesh smoothing procedure is proposed to remove bad quality
tetrahedra that may arise in the frequent remeshing framework of the PFEM, since they
can lead to an overly small stable time step size. The fully Lagrangian description of the
present method is particularly effective in problems characterized by strong variations in
the fluid boundaries. Moreover, the highly parallelizable and fully explicit nature of the
equations of the global solver is appealing for real-scale engineering applications with fast
dynamics and/or a high degree of non-linearity.

1 INTRODUCTION

The efficient numerical simulation of large scale three-dimensional Fluid-Structure In-
teraction (FSI) problems is of growing interest in many engineering fields. Partitioned
approaches base on the co-simulation concept are particularly effective because they al-
low for the reuse of existing software. The present work presents a partitioned approach
coupling an explicit version of the Particle Finite Element Method (PFEM) [18, 10, 12]
based on the assumption of a weakly compressible fluid [3, 21] and a standard commercial
FEM (SIMULIA Abaqus/Explicit) [1] for the structural domain. This allows for the use
of all its advanced features, such as the wide library of constitutive laws and finite ele-
ments, contact interactions and large deformations. The Gravouil and Combescure (GC)
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algorithm [9] is here employed for structure-to-fluid coupling: this method allows for dif-
ferent time-steps in the two subdomains and for non-conforming meshes at the interface.
The resulting interface problem consists of a system of fully decoupled equations, in the
case of conforming meshes, of and only weakly coupled equations otherwise, leading to an
efficient global explicit solver. The explicit time integration can be an appealing choice
for many engineering applications where the time step size is intrinsically small, namely
in large scale real applications with fast dynamics and/or high degree of non-linearity.
Furthermore, the fully Lagrangian formulation of this coupled approach is particularly
effective for the description of free surface flows and FSI problems with large structural
displacements, i.e., when the fluid boundaries can vary significantly. The fluid boundaries
are indeed automatically defined by the position of the mesh nodes, with no need for
interface tracking algorithms. Unfortunately, the Lagrangian motion of the fluid nodes
leads very quickly to overly distorted fluid meshes: according to the PFEM approach,
this can be overcome generating new meshes whenever the current one gets too distorted.
This feature of the PFEM approach becomes particularly demanding in the case of an
explicit 3D solver. On the one hand it must be underlined that the Delaunay Tassellation
may generate bad tetrahedra in 3D meshes that can lead to a vanishing stable time step
size in an explicit solver. This problem has been widely addressed in the literature, and
many advanced algorithms have been proposed to improve the mesh quality [6, 7, 13, 5].
On the other hand, these advanced algorithms are too expensive to be frequently applied
during the simulation as required in the PFEM remeshing framework, because they are
designed to improve only the initial fixed mesh in for standard FEM. For these reasons a
novel efficient smoothing technique has been developed to produce a regular mesh, with a
reasonably large stable time increment for the explicit solver. This smoothing algorithm
is fully explicit and parallelizable, because it exploits the same architecture of the fluid
solver thanks to an elastic analogy. The proposed approach is here validated through a
test case proposed in the literature. The comparison with the available solutions confirms
the accuracy of the partitioned solver. Moreover, an assessment of the computational
costs of the numerical analyses shows the effectiveness of the smoothing technique.

2 GOVERNING EQUATIONS

Let us consider a weakly compressible fluid occupying the evolving domain Ωt
f . The

motion of the fluid in the time interval [0, T ] is governed by the momentum equation and
the mass equation, respectively:

ρf (x, t = 0) = ρf (x, t) Jf (x, t) in Ωt
f × [0, T ] (1)

ρf
dvf
dt

= ∇x · σσσf + ρfbf in Ωt
f × [0, T ] (2)

where x are the coordinates in the current configuration, ρf is the fluid density, vf is the
fluid velocity and bf the external body forces. Moreover, Jf (x, t) is the determinant of
the deformation gradient, so that dΩt

f = dΩ0
fJf (x, t). Finally, the Cauchy stress tensor

σσσf is the sum of its hydrostatic and deviatoric parts: σσσf = −pfI + τττ f .
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In the framework of weakly compressible fluids, the pressure field can be related to the
density field through the Equation of State [2]:

pf (ρf ) = p0,f +Kf

[(
ρf
ρ0,f

)γ

− 1

]
(3)

where p0,f is the reference pressure, ρ0,f the fluid reference density, γ = 7 the specific heat
ratio and Kf the bulk modulus.

As far as the solid domain Ωt
f is concerned, the momentum conservation equation reads:

ρs
dvs
dt

= ∇x · σσσs + ρsbs in Ωt
s × [0, T ] (4)

where ρs is the solid density, vs the solid velocity, bs the external forces on the solid
domain and σσσs represents the Cauchy stress tensor on Ωt

s. Standard boundary and initial
conditions are applied on both domains to complete the formulation of a well posed
problem.

3 SPACE AND TIME DISCRETIZATION

Let us introduce a standard Galerkin finite element approach with linear interpolation
of velocities, fluid density and pressure. The semi-discrete version of the equations of
motion (2)-(4) is obtained:

Mf
dVf

dt
= Fext,f − Fint,f = Ff in Ωt

f × [0, T ] (5)

Ms
dVs

dt
= Fext,s − Fint,s = Fs in Ωt

s × [0, T ] (6)

where M are the mass matrices, V the vector of nodal velocities and Fint and Fext

the vectors of internal and external equivalent nodal forces, respectively. The discretized
version of the fluid mass conservation (1) is obtained introducing the vector of the current
fluid nodal densities Rf (more details can be found in [3]):

MρRf = R0 (7)

where R0 are the initial fluid nodal densities.
The explicit Central Difference Scheme (CDS) has been used to integrate equations

(5)-(6) in time. It is remarkable that the mass lumping performed on the matrices
Mf , Ms, Mρ leads to a global system of fully decoupled equations. On the other hand,
the CDS is only conditionally stable and an adaptive time step is computed in order to
fulfil the CFL stability condition:

∆tn+1 = CN min
e

(
rine
ce

)
(8)

where CN is a safety parameter, ce is the speed of dilational waves in the fluid depending
on the element density and rine is a characteristic size of the the e-th deformed element:
in the present work, the radius of the tetrahedron insphere is considered.
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4 COUPLING SCHEME

A partitioned strategy is employed in the present approach to solve the global system of
governing equations of the FSI problem: the explicit version of the PFEM [3] is used for the
fluid subdomain, while the commercial software SIMULIA Abaqus/Explicit [1] is used for
the structural subdomain. The two solvers are coupled with the Gravouil and Combescure
(GC) algorithm [9], which is a Domain Decomposition method initially proposed for
structural dynamics problems and then extended to FSI problems for example in [14].
The key idea behind the algorithm is to split the kinematic solution of each subdomains
into two terms, denoted as free and link solutions, respectively. The former is related to
the free motion of each subdomain as if they were not interacting with each other. The
latter evaluates the correction to this solution. This is done applying boundary tractions
at the fluid-structure interface that play the role of Lagrange multipliers for the imposition
of the kinematic constraint. These tractions restore the compatibility at the interface and
ensure the strong coupling of the partitioned approach.

The GC algorithm allows for the use if different time integration schemes in the two
subdomains, as well as non conforming meshes at the interface. When two explicit solvers
are used for the fluid and structure with conforming meshes, the link solution consists of
a small system of decoupled equations, leading to an overall fully explicit global solver.
On the contrary, when non conforming meshes are used, a small system of weakly coupled
equation is needed at the interface. A complete description of the proposed approach can
be found in [15].

5 ELASTIC ANALOGY FOR 3D MESH SMOOTHING

The problem of mesh distortion related to the adoption of a Lagrangian description for
viscous fluid flows is solved in the PFEM approach through the introduction of a new mesh
whenever the current one gets too distorted. This is done exploiting the effectiveness of
the Delaunay Tassellation, combined with the α-shape method [4] to recover the correct
domain boundaries. However, while in 2D the Delaunay algorithm ensures excellent
properties in terms of mesh quality, in 3D bad tetrahedra may be generated. More in
details, tetrahedra with almost coplanar nodes called “slivers” can be created by the
Tassellation. This represents a strong limitation for the use of explicit solvers, as the
consequent small insphere radii lead to vanishing stable time step size, because of Equation
(8).

For this reason, a novel efficient mesh smoothing approach based on an elastic analogy
has been developed to improve the worst elements insphere radii, with a computational
cost compatible with the frequent remeshing procedure required by the PFEM. The mesh
regularization is the result of the deformation produced in a fictitious elastic problem
under the action of a suitable distribution high fictitious pressures in high distorted tetra-
hedra.

The smoothing step is applied to a domain Ωs, which is constituted by all the elements
having the insphere radius smaller than an a priori fixed threshold, together with all the
surrounding ones which share at least one node with them.

4



S. Meduri, M. Cremonesi and U. Perego

Mesh
n. fluid elem. 450 k

n. struct. elem. 3800
Analysis

Time simulated 1 s
Total duration 32 h
Solver duration 77.8 %

Remeshing duration 11.4 %
Smoothing duration 8.9 %

n. Threads 8

Figure 1: Dam Break with elastic obstacle. Geometry and parameters of the analysis.

This elastic based smoothing has been combined with the sequential Geometric Element
Transformation (GETMe) approach presented in [19] to obtain a strategy effective on a
wider range mesh configurations that usually occur upon remeshing of of complex 3D
fluid flows. The resulting final smoothing algorithm is explicit and parallelizable and
exploits the same structure of the fluid solver, simplifying the overall architecture of the
method. Its efficiency allows to obtain remarkable improvements on the stable time steps
of the explicit fluid solver in a reasonable computational time that is compatible with
its frequent application due to the remeshing procedure of the PFEM approach. A more
detailed description of the smoothing algorithm can be found in [16].

6 EXAMPLES

6.1 DAM BREAK WITH ELASTIC OBSTACLE

Let us consider the dam break with obstacle proposed in [20, 11] and reproduced with
various approaches in the literature [8, 14, 15]. Among them [15] refers to the 2D version
of the same PFEM co-simulation here described, [11, 8] use monolithic PFEM schemes
for FSI, [20] presents a FEM approach, while [14] presents an SPH-FEM partitioned
approach with a coupling scheme that is similar to the present method. The initial
geometry is depicted in Figure 1 and the following values for the geometrical parameters
have been used: L = 0.146 m, h = 0.08 m, s = 0.012 m, b = 0.15 m. The fluid material
parameters are: density ρf = 1000 kg/m3 and viscosity µ = 0.001Pa · s; the solid domain
is modelled with a linear elastic material with density ρs = 2700 kg/m3, Young’s Modulus
Es = 1 MPa and Poisson ratio νs = 0. The fluid domain has been discretized with 120 k
nodes and an initial mesh of 450 k tetrahedra, while the structural domain has been
discretized with 3800 8-nodes brick elements.

On the left side of the tank, a column of water is initially sustained by a rigid wall
that is instantaneously removed at the beginning of the analysis, letting the water flow
inside the tank and hit an elastic deformable body clamped in the middle of the tank.
The impact bends the obstacle, while the resulting long wave hits the right rigid wall of
the tank and rebounds back impinging for the second time on the obstacle, which starts

5



S. Meduri, M. Cremonesi and U. Perego

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time [s]

D
is

pl
ac

em
en

t [
m

]

 

 

PFEM Monolithic [11]
FEM [20]
SPH-FEM [14]
PFEM Unified Formul.[8]
Present Method 2D [15]
Present Method 3D

Figure 2: Dam Break with elastic obstacle. Time evolution of the horizontal displacement of the tip of
the deformable structure.

to oscillate. Some snapshots of the simulation are reported in Figure 4, while the time
evolution of the horizontal displacement of the top of the elastic body is plotted in the
graph in Figure 2. One can observe a very good agreement in terms of timing and peak
value of the structural displacement with the results presented in the literature up to
0.5 s, which proves the capability of the model to represent the impact of a mass of fluid
with a flexible structure and its deformation. The beam oscillations after 0.5 s have some
discrepancies but it’s difficult to uniquely define a trend among the presented solutions
because of the high level of complexity of the dynamics of the problem after the second
impact.

Let us now consider the two graphs in Figure 3 to provide a quantitative evaluation
of the effectiveness of the smoothing procedure. The first one plots the stable time step
computed directly on the Delaunay mesh whenever a new grid is generated during the
analysis. The second one represents the corresponding stable time step size after the ac-
tion of the combined Smoothing procedure. One can observe how the mesh generated by
the Delaunay Tessellation could not be used in an explicit solver, because the consequent
stable time step would lead to an unacceptable analysis duration. The smoothing proce-
dure here presented shows a remarkable improvement: the mean value of the stable time
step is increased of almost 2 orders of magnitude from 3.05 · 10−8 s to 1.45 · 10−6 s, while
the minimum value of 4.9 · 10−10 s gains almost three orders of magnitude to 2.71 · 10−7.
This great improvement is obtained in an acceptable amount of time, as it can be noticed
from the table in Figure 1: the overall smoothing duration is less than the remeshing one
and their sum takes around the 20 % of the overall time duration of the analysis, which
is comparable to standard the performances of 3D PFEM approaches.
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Figure 3: Dam Break with elastic obstacle. Plot of the stable time step at each remeshing computed
after: (a)Delaunay Triangulations, (b)Combined Smoothing Procedure

(a) t = 0.10 s (b) t = 0.25 s (c) t = 0.30 s

(d) t = 0.45 s (e) t = 0.55 s (f) t = 0.60 s

(g) t = 0.75 s (h) t = 0.90 s (i) t = 1.0 s

Figure 4: Dam Break with elastic obstacle. Snapshot of the simulation at different time steps
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7 CONCLUSIONS

This work presents a fully Lagrangian explicit partitioned approach for FSI problems
coupling the Particle Finite Element Method for the fluid subdomain and the commercial
FEM software Abaqus/Explicit for the structural subdomain. The Lagrangian description
of the Particle Finite Element Method for the fluid subdomain is particularly effective for
free surface flows and large structural displacements. The use of a commercial software
for the structure allows for using in the simulations of all its advanced functionalities, such
as a wide library of finite elements and material constitutive laws, or contact interactions.

The coupling achieved by means of the Gravouil and Combescure algorithm, which
ensures strong coupling as well as the possibility to use incompatible space-time dis-
cretizations in the two subdomains. The resulting interface coupling problem is given
by a small system of fully decoupled equations for the case of conforming meshes, and
only weakly coupled otherwise. In the 3D framework, the fast mesh generators of the
PFEM approach may generate meshes including bad quality tetrahedra, that can lead to
an unacceptable increase in the computational time when an explicit integration scheme is
employed. Consequently, a novel efficient smoothing techique based on an elastic analogy
has been presented. The presented numerical test confirms the accuracy of the coupled
approach, as well as the effectiveness of the smoothing procedure.
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