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Abstract. Offshore wind turbines are currently increasing the potential of wind energy,
and numerical simulation is a way to help this industry to reach maturity. In the context
of floating wind energy, predicting the loads applied on structures and their response is
essential. Those data will enable an optimization of floaters dimensioning, necessary for
CAPEX reduction.

As the simulation of floating wind turbines requires the representation of both complex
geometries and phenomena, several alternative techniques have been developed. The wake
generated by the rotor can be modeled using methodologies inherited from onshore wind
turbines simulation, and coupled with a hydrodynamic code. However those simplified
methods have been primarily developed for wake study, and thus have varying precision
for loads estimation.

This work proposes a methodology for the simulation of a single or several turbines
with an exact representation of the geometries involved, targeting an accurate evaluation
of loads. The software library used is ICI-tech, developed at the High Performance Com-
puting Institute (ICI) of Centrale Nantes. A monolithic approach is applied on a single
computational mesh, where all the different phases are defined through level-set functi-
ons. The Navier-Stokes (NS) equations are solved in the Variational MultiScale (VMS)
formalism using stabilized finite elements. This approach, coupled with an automatic and
anisotropic adaptation procedure, guarantees the good representation of the geometries
immersed. The automatic adaptation refines the mesh only in interest zones, allowing
the simulation of phenomena with very different orders of magnitude, e.g. aerodynamics
around blades and waves propagation. The reduction of the number of points in the mesh
and the massive parallelization of the code are also necessary for wind turbine simulation.
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This has been realized within the EOS project scope, funded by WeAMEC (West Atlan-
tic Marine Energy Center, https://www.weamec.fr/en/blog/record_project/eos/).

1 Introduction

The development of renewable energies has significantly accelerated over the last few
years. Wind energy is particularly interesting to that extend with massive amount of
knowledge gathered, as wind farms have been implanted onshore for more than a decade.
However, the future of wind energy seems to be located offshore. Ground bound wind
farms have been producing energy for a decade, especially in North Sea, but only few
places are eligible to the implantation of wind turbines as low water depth is required.
To that extent, floating wind turbine (FWT) represent a major field of development for
the wind industry. Prototypes are currently tested off the coasts of Norway, Japan and
Portugal, and a first pilot farm was commissioned at the end of 2017 offshore Scotland.

Fast and accurate simulation methods are crucial for the development of floating wind
energy. Simulating floating wind turbine under various aerodynamic and hydrodynamic
cases, and especially extreme events, will enable a better dimensioning of both the turbine
and the floating structure. This optimization of the geometries currently used is critical
for an industrial deployment of this sector, currently noncompetitive compared to more
conventional energy sources. Motivated by the development of onshore wind energy, many
authors studied the aerodynamic behavior of turbines, e.g. [1], often without representing
exactly the blades to reduce the computational effort. The wake effect due to the wind
turbine is modeled, which leads to trustworthy aerodynamic results far from the turbine,
but also to low precision data near the blades. This limitation can be overcome if full
resolution of the flow equation are done in the fluid domain, and some studies consider this,
e.g. [2], making them deal with computationally expensive simulations. Hydrodynamic
effects also hold a huge influence in these computations, as [3] showed that a combination
of high amplitude swell and calm wind can inverse the direction of the relative wind at
the rotor. However, dealing with a wind turbine under aerodynamic and hydrodynamic
effects requires high efforts in both development and computations. Consequently, only
few authors interested themselves in coupled simulations, e.g. [4] or [5]. In a majority of
cases, only a component was studied at a time, as did [6], [7] or [8]. The same situation
is observed in the literature for experimental studies. Even if a lot of turbines have been
studied in wind flumes, few experiments focused on both wind and waves effects. The
work in [9] and [13] can be noted, where only particular aerodynamic behaviors have been
studied.

The full resolution of the geometries, boundary layers and hydrodynamic effects in
the simulation of a floating wind turbine is a real challenge. Events with very different
orders of magnitude for both their characteristic time and length are observed in a large
computational domain, e.g. between the propagation of the swell and the aerodynamic
vortex at the trailing edge of the blades. This problem can be handled using actuator
disk methods to approximate the small-scale aerodynamic effects observed at the rotor,
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e.g. in [10], or with several overlaid meshes having different levels of refinement, e.g. [4].
This work, funded by the West Atlantic Marine Energy Center (WeAMEC), proposes
another methodology based on a unique computational mesh and a monolithic approach.
The simulated wind turbine is immersed into the computational mesh, and is defined
using a level-set function, while the air/water interface is specified with mixing laws and
level-set function. The Navier-Stokes (NS) equations are solved in all the domain using
stabilized finite elements (SFE) and a Variational-MultiScale (VMS) formulation. The
computational mesh is adapted anisotropically and automatically during the simulation,
with its deformations ruled by an error estimator. The generated mesh is well adapted to
the simulation of floating wind turbines, as it is refined only at the interfaces and where
small-scale events occur.

The methodology used in this work is detailed in Sec. 2, with focus points successively
placed on the different steps of the simulation procedure. The first results obtained are
presented.

2 Methodology

This Sec. presents the simulation procedure used in ICI-tech. The different software
elements are presented in the first four Subsecs. The whole simulation procedure is finally
presented in Subsec. 2.5. The validation process then requires the computation of the
force. As the meshes used are not body fitted, this computation is not trivial, and the
procedure followed is presented in Subsec. 2.6.

2.1 Mesh immersion procedure

The mesh immersion technique consists in a representation of a shape using a sin-
gle computational mesh. The immersed body can be represented in several ways, the
only constraint being the existence of an interior. This characterization enables the con-
struction of a signed-distance function α, presented in Eq. (1) for the immersion of an
object ω of frontier Γ in a computational domain Ω.

α = d̄(x, ω) =

{
d(x,Γ) if x ∈ ω
−d(x,Γ) if x /∈ ω , x ∈ Ω. (1)

A value for the signed distance is measured at every point of the computational mesh.
The reconstruction of the immersed shape can be performed from the sign of this signed
distance using a level-set function, e.g. with a Heaviside function returning 1 for the
interior (α > 0) and 0 for the exterior (α < 0). However this Heaviside function introduces
discontinuities, which are incompatible with the resolution of the Navier-Stokes equations
as presented later on. To that extent a smoothed Heaviside function has been designed,
and is presented in Eq. (2).

Hε(α) =
1

2
(1 +

uε(α)

ε
), (2)

with
uε(α) = ε tanh(

α

ε
). (3)
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Figure 1: Signed distance α Figure 2: Smoothed Heaviside Figure 3: Final adapted mesh

This immersion technique introduces a transition area around the frontier of ω, which
is of width 2 × ε. The parametrization of Hε brings flexibility to the immersion proce-
dure. Varying definition of this interface, coupled with an automatic mesh generation
positioning computational points in interest zones, guarantees an accurate representation
of any geometry immersed. An example of mesh reconstruction is proposed in Figs. 1 to
3. While the signed-distance function presented in Fig. 1 can not achieve mesh immersion
by itself, the results obtained with Hε in Fig. 2 provide an interior, depicted in red. The
reconstruction is correctly performed despite the complex shape of ω in this situation.
Note that the thin zone at the interface corresponds to the transition area previously
mentioned. The mesh obtained at the end of the immersion procedure is presented in
Fig. 3. A large majority of computational points are concentrated around Γ, i.e. in the
region where the representation of the level-set function is critical to the quality of the
reconstruction.

The computational complexity brought by this methodology can become considerable,
e.g. when a shape represented by M -elements mesh is immersed in a N -points computa-
tional mesh. The signed-distance must be computed at each point of the computational
mesh, and if no optimization is performed the distance from the current point to each of
the M elements. The complexity obtained is N ×M , which can rapidly become unforda-
ble. In the context of floating wind turbines, the computational cost is far too expensive,
and optimization has been performed through the construction of a tree structure, named
octree.

During the building procedure, the number of elements of the mesh immersed in a
computational domain of dimension d is evaluated. If the number found is too impor-
tant, the computational domain is divided in two along each dimension, thus generating
2d subdomains. All the elements contained in the initial domain are allocated to the
subdomains created, and this procedure is recursively repeated. The construction of the
octree ends when the number of elements in the refined subdomains is acceptable or if
the maximum depth is reached. When the distance is needed at a given point of the
computational mesh, a browsing of the octree enables to select the closest elements from
the immersed mesh. The number of distances to evaluate is considerably reduced and
the complexity of the immersion procedure is decreased, within a minimal theoretical
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complexity of N × log(M).

2.2 Anisotropic mesh adaptation

The mesh adaptation procedure is essential for the reconstruction as presented in Sub-
sec. 2.1, but is also a self-standing software unit critical for ICI-tech. The computational
mesh is automatically generated from a potentially coarse initial mesh and tends to gather
a maximum of points in the interest zones. The theory proposed by [11] is based on a
principle of equidistribution of the error in all the computational domain. An a posteri-
ori error estimator is built at each node of the computational mesh. The interest zones
previously mentioned are defined from this estimator: high error areas need to be refined
and vice versa. The evolution of the error is examined along the edges of the mesh, and
important variations can lead to points insertion. Metrics are built at each node from
edge errors in order to deform the mesh, always with an error minimization goal. These
metrics feature scaling factors for each dimension as refinement is conducted only along
the representative dimensions. The mesh generated is anisotropic, which enables to re-
duce largely the amount of points needed in the simulations. This procedure is repeated
iteratively, until an appropriated mesh is obtained.

The adaptation depends on the construction of the error estimator. In the context of
mesh immersion, as proposed in Subsec. 2.1, the error estimator is built from the results
provided by the level-set function. As a smoothed Heaviside function is used, important
gradients are found around the interfaces of the objects immersed, while the function
is quasi-constant elsewhere. The level-set function printed in Fig. 2 encounters high
gradients in the green region around the interface, which explains the high concentration of
points in these areas found in the mesh presented in Fig. 3. On the contrary large cells are
generated in zones where colors remain constant, e.g. at the bottom of the computational
domain. Whenever several bodies are immersed in the same computational mesh, the
immersion procedure is conducted for each body, i.e. a level-set function is defined for
each immersed element. In order to guarantee correct adaptation for each body, the
construction of the error estimator takes every level-set function results into account.
Some immersed bodies can be weighted in the error estimator in order to prioritize their
adaptation.

However level-set meshes as depicted in Fig. 3 are not suitable for the resolution of
fluid flows, because large cells introduce numerical dissipation and thus miss sub-scale
flows. The mesh adaptation needs to take into account the fluid effects occurring, and
consequently the error estimator is derived to take into account the velocity output. The
error estimator is composed from both the phases of the immersed bodies and the velocity.
The mesh obtained with a Re = 1000-flow, horizontally oriented towards the right of the
computational domain, past a cylinder is presented in Fig. 4. At the beginning of the
simulation the major part of cells are concentrated around the circle. After some incre-
ments high concentration of cells are observed in the wake as the adaptation procedure
tracks the vortices. Note that using the phases for the adaptation is not necessary for
obtaining accurate fluid flows. However the full CFD paradigm proposed in Subsec. 2.4
requires the capture of boundary layers, and to that extent the adaptation on the phases
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Figure 4: Mesh for a flow past a cylinder at Re = 1000

of the immersed body is an advantage of the present method.

2.3 Mixing laws

Once the mesh immersion procedure ends, the resolution of fluid flows can be solved.
It is done in ICI-tech with an incompressible resolution of the NS equations using the
VMS formulation. But for the NS problem to be solved, the characteristics of the flow
at each point of the computational mesh have to be known. To that extent mixing laws
are applied with use of the level-set function defined in Eq. (2). Viscosity and density are
specified for each of the phase in the computation, and mixing laws are applied. A linear
law is presented in Eq. (4) for the immersion of an object of viscosity ηi in a domain of
viscosity η. At a point whose distance to the immersed element is α, the viscosity ηp
obtained is presented. If several elements are immersed, the mixing laws are applied as
many times as needed. The linear mixing law presented is appropriated when the different
viscosities found in the simulation have similar orders of magnitude. However when large
disparities are encountered, other laws may be more appropriated, e.g. logarithmic ones.

ηp(α) = ηiHε(α) + η(1−Hε(α)). (4)

The same mixing laws are applied for density, and consequently every point of the
computational domain possesses its own viscosity and density. To make a link with the
example proposed in Subsec. 2.1, the viscosity of the object depicted in red is ηi, while
the part of the domain in blue has a viscosity of η. The transition region, in green, has
a viscosity varying between η and ηi depending on the signed-distance function. The
presence of an important number of points in this transition area restricts the difference
of viscosity found in a cell, which is helpful in terms of NS resolution.

2.4 Resolution of the Navier-Stokes equations

ICI-tech proposed a monolithic approach based on stabilized finite elements where the
incompressible NS problem, presented in Eq. (5) with v velocity and p pressure, is solved

6



L. Douteau, L. Silva, H. Digonnet, T. Coupez, D. Le Touzé, J.-C. Gilloteaux

with the VMS formulation.

∀(w, q) ∈ V0 ×Q,{
ρ(∂tv,w) + ρ(v · ∇v,w) + 2νεv : εw − (p,∇ ·w) = (f ,w)

(∇ · v, q) = 0

(5)

The VMS paradigm operates as an implicit-LES (Large Eddy Simulation). Velocities
are split between the coarse scales, superior to the local mesh size which are solved,
and sub-scale, which are modeled. This is expressed in Eq. (6), with vh coarse scale
velocity and v′ subgrid-scale velocity. In LES a viscous term are incorporated in the NS
equations to compensate for the effect of subgrid-scale turbulence. The VMS reformulates
the NS problem to express the subgrid-scale velocities, and to mathematically evaluate
their influences. Presented in Eq. (7), the VMS formulation of the NS problem features
stabilization terms (τK , τC) and residuals (RM, RC) coming from this evaluation of
subgrid-scales.

v = vh + v′ (6)

∀(wh, qh) ∈ V0,h ×Qh,
ρ(∂tvh,wh) + (ρvh · ∇vh,wh)−

∑
K∈Th

(τKRM, ρvh∇wh)K

+2µε(vh) : ε(wh)− (ph,∇ ·wh) +
∑
K∈Th

(τCRC ,∇ ·wh)K = (f ,wh)

(∇ · vh, qh)−
∑
K∈Th

(τKRM,∇qh)K = 0

(7)

More details on stabilization terms and residuals can be found in [11]. Nonetheless
it can be noted that the stabilization terms depend on both ‖vh‖ and the characteristic
length of the mesh cell currently evaluated.

2.5 Simulation procedure

The simulations with ICI-tech rely on mesh adaptation, phase reconstruction and re-
solution of the NS equations, detailed in the previous Subsec. The simulation procedure,
presented in Fig. 5, starts with a mesh adapted on the level-set obtained after immersion
iterations. Mesh immersion is performed with this mesh, and mixing laws are applied.
The NS problem is then solved with a given time step, providing velocity and pressure
at every point of the computational domain. The mesh is adapted as proposed in Sub-
sec. 2.2, based on weighted velocities and level-set results. Consequently the mesh newly
generated will concentrate cells where fluid effects occur. This procedure is repeated until
full time simulation is performed.

Even if anisotropic meshing enables a significant reduction in the number of points
needed in the simulations, the full-CFD paradigm proposed by ICI-tech remains compu-
tationally expensive. In order to make ICI-tech competitive, optimization of computati-
onal costs have been conducted in two different ways. The first orientation has been the
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Velocity and Pressure : 
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Figure 5: Simulation procedure with ICI-tech

limitation of the complexity of the algorithms, e.g. through the octree implementation
briefly discussed in Subsec. 2.1. The code has also been massively parallelized in order
to enable the use of a large number of cores. Particular attention has been placed on
partitions during parallel meshing and NS resolution, details can be found in [12].

2.6 Computing the force applied on an immersed element

The computation of the force applied on a object Ω is not trivial in the context of mesh
immersion, as the mesh is not body fitted. However the concentration of point around the
interfaces, highlighted in Fig. 3, enable accurate evaluation of the loads. The forces are
computed a posteriori from the results of velocity v and pressure p obtained after the NS
resolution. A reconstructed velocity gradient is built and the stress tensor σ is computed at
every point of the mesh, with η viscosity and I identity matrix. The stress tensor accounts
for all the fluid effects occurring, and to evaluate the loads applied on Ω, the computation
of local normal constraint Tlocal is required and performed in Eq. (8). The definition of
a vector normal to Ω is necessary at that point, but as the computational points are not
disposed along ∂Ω, this determination is not immediate. It has been chosen to define n as
a normalized gradient of the phase φ obtained in the immersion of Ω. This choice brings
different possibilities. First of all it enables to compute n on every point of the mesh using
an existing data. The gradient of the phase is computed and no projection are performed,
which brings computational savings. This definition also introduces interesting behavior
when ∇φ is computed outside the transition zone observed during immersion. As φ
becomes rapidly quasi-constant after this area, the norm of the gradient tends towards
zero. This sets a natural filter which selects the points located nearby ∂Ω, which have the
greatest impact on the force generation. The local normal constraints are then computed
at each point of the computational mesh from te corresponding stress tensor and normal
vector. The force F applied on Ω is then deducted from an integration of the local normal
constraints over ∂Ω, as in Eq. (9).
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Figure 6: Smoothed Heaviside Figure 7: Dirac function δε

Tlocal = σ · n, with

{
σ = η(∇v +∇vT )− pI
n = − 1

‖∇φ‖∇φ
(8)

F =

∫
∂Ω

TlocaldS (9)

As the mesh is not body-fitted, the approach proposed by [14] is used. The expression
is reformulated to turn the integral over ∂Ω, condition that points can hardly meet, into
an integral over Ω. The force computed over the transition zone Fε is presented in Eq. 10.

Fε =

∫
Ω

δεTlocaldV , with δε =
1− φ2

2ε
(10)

This formulation is inherited from the level-set definition. The ε parameter, characteri-
zing the width of the transition area, is defining the span of the integration zone. Moreover
the dirac function δε introduced is directly derived from φ. The level-set function and the
dirac one are respectively depicted in Figs. 6 and 7. The closer a point is located from the
interface, the higher value is obtained with the dirac function. Consequently the points
located far from the interface have a quasi null influence on Fε, and can be neglected.
The convergence of Fε when the width of the transition area tends towards zero has been
discussed by [14], who proved that the limit obtained is F.

lim
ε→0

Fε = F (11)

The precision of the force representation is consequently directly depending from the
width parameter, i.e. the quality of the force obtained is determined by the immersion
process.

3 Application to floating wind turbines

This Sec. focuses on the works realized for the simulations of floating wind turbines.
The results obtained with the mesh adaptation procedure are presented in Subsec. 3.1.
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Figure 8: Immersed mesh Figure 9: Slice of adapted mesh Figure 10: Reconstructed
wind turbine

The validation of the solver is currently being performed, and Subsecs. 3.2 and 3.3 detail
the procedures followed for validation of respectively monophasic flows and wave genera-
tion.

3.1 Floating wind turbines reconstruction

The reconstruction of floating wind turbines have been studied in order to evaluate the
number of nodes required for an accurate representation of the geometries. The surface
mesh of a prototype studied in wind flume by [13], composed of approximatively 75K
facets and depicted in Fig. 8, is immersed in a computational domain containing about
120K points. A slice of the mesh obtained at the end of the immersion procedure is
presented in Fig. 9. This slice intersects the rotor, and consequently the high concentration
of points afford to guess the position of the blades. The width parameter of the level-
set, named ε in Subsec. 2.1, is of about 1/1000-th of the overall wind turbine size. The
order of precision of the immersion is of the decimeter for a full-scale wind turbine. This
precision might seem very low, particularly at the tip of blades, but the reconstructed
wind turbine depicted in Fig. 10 is appropriated for visualization purposes. The slice of
the mesh highlights the presence of coarse cells far from the turbines. This mesh, which
is too coarse for flow simulations, is used to initiate the computations. The adaptation
procedure coupled to the resolution of the Navier-Stokes problem generates refinement
based on the velocity of the flow, which will lead to thinner cells in interest zones. Note
that more than one billion points are required to obtain the same precision with a regular
grid.

This case gives an occasion to highlight the computational savings provided by the
octree. The construction of the octree was performed as presented in Subsec. 2.1 with a
limit of 200 elements per subdomain and a max depth of 12. The cost of the distances
computation for the immersion of the wind turbine mesh (Fig. 8) in the adapted computa-
tional mesh (Fig. 9) is presented in Tab. 1. The focus has been placed on the computation
of distances because this step features the highest complexity. Moreover the evaluation of
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distances is often required during a simulation cycle, as explained in Subsec. 2.5, and its
optimization was a need. The computational time required for distance evaluations was
divided by about 235 only by the addition of the octree. The browsing of the octree to se-
lect the closest neighbors for each point enabled to largely reduce the number of distances
to evaluate, as only 0.081% of the computations were processed. The cost of the octree
browsing increases the average time needed to compute a distance by a factor of about
5, which is reasonable considering the huge limitation in the number of evaluations done.
This example assessed the huge interest of the octree structure for distance computation
algorithm, and by extension for mesh immersion procedure.

Distances evaluated Time for distance evaluation Time per distance (s)
No Octree ∼ 8693M (100%) 9min, 51s (100%) 6.8.10−8

Octree ∼ 7M (0.081%) 2.5s (0.4%) 3.5.10−7

Table 1: Influence of octree for wind turbine immersion

The octree implementation intended to limit the complexity of the distance algorithm.
The scalability of the immersion procedure has then been studied with a test case of 100
wind turbines. The wind turbine mesh presented in Fig. 8 was duplicated and randomly
dispersed in a computational domain of size 50 × 50 × 2.5. As a matter of comparison
the dimensions of the computational domain used for the reconstruction of a single wind
turbine were 2×2×2.5. The immersed mesh consequently features 100 times more facets,
the results of immersion are presented in Figs. 11 and 12. The computational mesh used
for the immersion contains 18M nodes for the same precision as in the single turbine test
case. The number of nodes used has been multiplied by about 150, while the immersed
mesh was 100 times bigger. This can be partly explained by the increase in computati-
onal mesh size, and even with this explanation the rise in the number of nodes needed
has been well limited. Moreover the increase in computational times can be controlled
with a corresponding increase in the number of processors used. The disposition of the
floating wind turbines does not reproduce a wind farm, however the computational cost
required for the immersion has the same order of magnitude, which proves the potential
of ICI-tech for offshore wind applications. Note that the colors depicted on the wind
turbines correspond to the partitions used for the immersion. They are well divided, as
the processors communicate between each other to share the computational load.

3.2 First validation towards high Reynolds number single-phase flows

ICI-tech is currently used for applications such as injection in the context of composites.
The flows studied commonly have low Reynolds number. On the contrary at the tip
of blades the combination of wind speed and blade rotation speed generate flows with
Reynolds of several millions. The validation of the flow solver is currently conducted in
order to validate the results obtained for those Reynolds. To that extent drag and lift
coefficients have to be calculated, which required the computation of the force applied on
the immersed shape. The evaluation of the force is presented in Subsec. 2.6. Once the
value of the force is obtained, the drag and lift coefficient Cp and Cl can be calculated, from

11



L. Douteau, L. Silva, H. Digonnet, T. Coupez, D. Le Touzé, J.-C. Gilloteaux

Figure 11: Reconstruction of 100 floating wind turbines Figure 12: Zoom on 3
WTs and mesh slice

Eqs. 12 and 13 with A cross sectional area. The pressure coefficients are evaluated with
Eq. 14 with p∞, ρ∞ and V∞ respectively pressure, density and velocity in the freestream.

Cd =
2

ρU2A
F · x (12)

Cl =
2

ρU2A
F · y (13)

Cp =
p− p∞
1
2
ρ∞V∞

(14)

The validation started on 2D test cases, where flow passing NACA profiles were stu-
died. The results obtained with ICI-tech (CFD, SFE, VMS) were compared against data
from [15], where a Diffused Vortex Hydrodynamics method is used. A particular focus
was placed on the test cases that featured NACA 0008 profiles, as wind turbine blades
are commonly composed of both NACA and DU profiles. Validation is currently being
performed on test cases whose Reynolds number are Re = 2000 and Re = 6000, and the
influence of all the different parameters used in computations are highlighted. The width
parameter ε and the number of points composing the computational mesh are particularly
overlooked.

The flow passing a NACA-0008 with an orientation of 4◦ immersed in a constant
uniform flow of Re = 2000 is studied, to draw a comparison with the results of [15].
Different values of ε are studied in order to evaluate the influence of this parameter, while
the number of nodes in the computational meshes was kept constant at 80k. This number
of nodes is far too important for this kind of simulation, which guaranteed that it would
not be a blocking factor in the simulations. The vorticity fields obtained with both codes
are presented in Fig. 13, and the mesh generated by ICI-tech and used in the computation
for ε = 2.10−4 is depicted in Fig. 14. An important numerical diffusion is highlighted on
the results from ICI-tech, which could be limited by works on the quality of the mesh
adaptation. Figs. 15 and 16 present the results obtained with a Re = 2000-flow around
a NACA-0008 profile, for different ε (Lmax). Those results are compared against DVH
data provided by [15]. At steady state, interesting precision is met for drag, while errors
remain for lift or pressure coefficients. The dependence of the results towards the width
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Figure 13: Up: Vorticity field around NACA-0008 at Re = 2000, from [15]. Down:
Results obtained with ICI-tech.

Figure 14: Mesh obtained for the NACA-0008 Re = 2000 test case with ICI-tech.

parameter seems to be limited. The noise observed on the Cp curves seems to be due
to the anisotropic meshing of the elements immersed. Further researches are currently
conducted in order to improve the results presented.

Those Re = O(1000) computations can not be considered as high Reynolds flows. The
validation will then continue on higher Re, e.g. with data from [16]. 3D NACA profiles
will then be studied, before performing simulations on blades.

3.3 Wave generation and free-surface tracking

Accurate resolution of the free-surface dynamics are crucial for a good resolution of the
movements of floating wind turbines. The simulations presented in the next paragraphs
aim to track precisely the free-surface. The mesh will need to be adapted to follow
the air/water interface, which is handled in ICI-tech by means of the convected level-
set method introduced in [17]. This technique relies on the introduction of transport
terms into level-set function, which is modified to introduce an advection velocity. The
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Figure 15: Drag and lift coefficients for flow around a NACA-0008 profile at Re =
2000 for different ε

free-surface movements being taken into account, the level-set function will consequently
better capture the interface.

A numerical wave-maker has been implemented. A piston-type wave maker was chosen,
whose movements are determined using HOS-NWT [18]. From a specified wave field,
HOS-NWT returns the movements of the wave generator. Consequently the validation
will consist on a tracking of the free-surface generated, and its comparison with the wave
field used as HOS-NWT input.

A wave field of period 0.55s and amplitude 0.1m propagated from the left of the com-
putational domain have been generated in ICI-tech. The preliminary results presented
hereafter intend to reproduce an air/water interface, but have been realized with viscosi-
ties a hundred-times bigger for each phase. This artefact enabled to better stabilize the
computations, but will have to be suppressed in order to get high precision results. A ε
of 6.10−3 and 40k points are used for the computational mesh. As for the single-phase
computations, this important amount of nodes enable to study the influence of the width
parameter only.

The free-surface obtained with ICI-tech is drawn in blue in Fig. 17, while the wave
field input in HOS-NWT is presented in red. If the fidelity of the first wave generated
is interesting, the ICI-tech free-surface results progressively feature more damping and
a very important noise at the right end of the domain. The damping can be partially
explained by the higher viscosities chosen for the fluids, but the influence of numerical
diffusion will have to be overlooked. The noise observed will be removed by the addition
of a numerical absorption area at the right end of the domain. The mesh generated and
used by ICI-tech is presented on Fig. 18. The majority of the cells are concentrated along
the free-surface, and a high concentration is also observed at the right end of the basin.
The numerical absorption area will need to limit the refinement in this area, in order to
limit the number of nodes used in that region and to increase the numerical dissipation.

Further researches are being performed on the 2D basin, before a transition towards a
3D numerical wave tank. The generation of complex wave field will finally be realized.
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Figure 16: Pressure coefficients for flow around a NACA-0008 profile at Re = 2000
for different ε

4 Conclusion and outlook

ICI-tech seems to offer potential for accurate simulation of floating wind turbines, even
if lot of development are still needed. The uniqueness of the computational mesh coupled
to the immersion procedure provides a lot of flexibility to the simulation, as an adapted
mesh can be generated iteratively from a coarse initial. The code uses automatic meshing
routines that enable the reduction of the size of the computational meshes. The cost
commonly required for full-scale LES simulation can be reduced, while the same precision
on the results is obtained, thanks to the VMS solver implemented. The code is undergoing
validation, both on aerodynamics and hydrodynamics. Single-phase flows will be validated
in 2D with NACA profiles, before a transition to 3D. 3D NACA profiles will be studied,
and finally flows passing blades and rotor will be overlooked. Free-surface simulations will
focus on 2D, with regular and irregular waves. The same steps will be repeated in 3D,
before studying the interactions between wave fields and floating structures.
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Figure 17: Comparison between a wave field generated using ICI-tech
and the results from HOS-NWT

Figure 18: Mesh generated by ICI-tech for the wave maker test case
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