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Abstract. The present work deals with an elastic anisotropic damage model which uti-
lizes a damage tensor of second order. The considered class of materials is characterized
by an initially isotropic quasi-brittle material behaviour. Artificial stiffening effects during
damage processes are excluded by the specific choice of the elastic part of the free energy.
Based on the Helmholtz free energy the model equations are derived in a thermodynam-
ically consistent way. In order to ensure that the eigenvalues of the damage tensor do
not exceed the value one, anisotropic damage hardening is introduced. Two approaches,
(i) a suddenly increasing function and (ii) a smooth function are proposed and discussed
in detail. It is shown exemplarily with a uniaxial loading that the latter one performs
well, where the former one suffers from a second (undesired) elastic region. Two more
numerical examples are investigated in order to illustrate the behaviour of the model for
two- and three-dimensional loading scenarios.

1 INTRODUCTION

Since the pioneering work of Kachanov [1] in 1958 continuum damage mechanis has
emerged as an important field in continuum mechanics. Introducing damage as a scalar
variable is a simplifying assumption but still today many constitutive models utilize a
scalar damage variable (being equivalent to isotropic damage). However, from the physical
point of view it seems to be reasonable to model damage anisotropic, e.g. the orientation
of microcracks may be dependent on the loading direction and/or preferred directions of
the materials. A simple possibility to model anisotropic damage is to use multiple scalar
damage variables (see e.g. [2] for a microplane model). It seems to be easy to model
damage by a vector (see for an exemplary model [3]), but unfortunately damage tensors
of odd-order have essential limitations and furthermore, the effect of total damage cannot
be expressed by the sum of the damage vectors of each plane. Modeling damage with
a damage tensor of second order (see e.g. [4]) is already a quite sophisticated approach,
nevertheless anisotropic damage is restricted to orthotropic degradation, cf. the discussion
in [5]. Though, orthotropic degradation seems to be sufficient for many applications. For
the numerical implementation of an anisotropic damage model coupled to plasticity using
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a second order damage tensor, see [6, 7]. More complex models even work with a damage
tensor of fourth order (see e.g. [8]), where the fourth order tensor maps between the
effective stress tensor and the cotinuum mechanical stress tensor (both tensors of second
order). Ultimately, anisotropic damage can be represented by a damage tensor of eighth
order. This tensor of eighth order then maps between the undamaged (virgin) stiffness
and the damaged stiffness (both tensors of fourth order).
The present paper utilizes a damage tensor of second order, where the elastic part of the
free energy is constructed in such a way that the model a priori excludes artificial stiffening
effects. In order to show this mathematically, Wulfinghoff et al. [9] derived a criterion,
called the damage growth criterion, which has to be fulfilled to exclude artificial stiffening
effects. Or in other words, if this criterion is fulfilled, it is guaranteed that during any
damage process the material’s stiffness decreases (or at least remains constant) in each
direction.

2 MODEL EQUATIONS

In this work, an elastic anisotropic damage model using a second order damage tensor is
presented. Initially isotropic materials are considered and the geometrically linear theory
is applied utilizing the infinitesimal strain tensor ε = sym(∇u), where u denotes the
displacement field.

2.1 Helmholtz free energy

Starting point of the constitutive model is the Helmholtz free energy which is assumed
to take the form

ψ = ψe(ε,D) + ψiso
h (α) + ψani

h (D) (1)

The elastic part of the free energy is represented by ψe and depends on the strain ten-
sor ε and the symmetric second order damage tensor D (six independent components).
Furthermore, isotropic damage hardening represented by ψiso

h (being dependent on the
damage hardening variable α) and anisotropic damage hardening (ψani

h ) are considered.
A specific form of the elastic free energy function for initially isotropic materials which
excludes artificial stiffening effects a priori is adopted from [11]

ψe(ε,D) = 1
2

(
1− g

)
λ tr2(ε)︸ ︷︷ ︸

λ-term

+µ
(
I −D

)
: ε2︸ ︷︷ ︸

µ-term

(2)

Here, λ and µ denote the Lamé parameters. As can be seen, the λ-term is damaged
isotropic by the scalar (1 − g), where g is a function of the trace of the damage tensor:
g = g(tr(D)). A simple choice for the g-function is g(tr(D))=1

3
tr(D) which will be used

in the following. The isotropic damage hardening energy is chosen to be quadratic in the
damage hardening variable α

ψiso
h (α) = 1

2
K1α

2 (3)
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Clearly, more complex hardening energies (such as exponential hardening) can be consid-
ered. In the context of initially isotropic materials, anisotropic damage hardening does
not seem to be of importance. However, using a second order damage tensor implies
the problem that eigenvalues of the damage tensor may exceed the value of one which
would be nonphysical. To avoid this situation the anisotropic damage hardening is uti-
lized. Making the anisotropic damage hardening dependent on the eigenvalues Di of the
damage tensor D

ψani
h (D) =

3∑
i=1

f(Di) (4)

the eigenvalues can be bounded, which will be discussed later on in detail. Next, the sec-
ond law of thermodynamics is considered in order to derive the thermodynamic conjugate
forces from the Helmholtz free energy defined in this section.

2.2 Second law of thermodynamics and thermodynamic conjugate forces

The second law of thermodynamics states that the dissipation within the material has
to be always nonnegative. Neglecting thermal effects, that means that the mechanical
energy stored within the material (consisting of a reversible and an irreversible part) can
not exceed the mechanical work generated on the material. The second law of thermody-
namics (dissipation inequality) then reads

D = σ : ε̇− ψ̇ ≥ 0 (5)

Inserting the expressions for the free energy in Eq. (5) yields

D = σ : ε̇−
[
∂ψ

∂ε
: ε̇+

∂ψ

∂D
: Ḋ +

∂ψ

∂α
α̇

]
= σ : ε̇−

[
∂ψe

∂ε
: ε̇+

(
∂ψe

∂D
+
∂ψani

h

∂D

)
: Ḋ +

∂ψiso
h

∂α
α̇

]
=

(
σ − ∂ψe

∂ε

)
: ε̇︸ ︷︷ ︸

term1

−
[(

∂ψe

∂D
+
∂ψani

h

∂D

)
︸ ︷︷ ︸

=−Y

: Ḋ +
∂ψiso

h

∂α︸ ︷︷ ︸
=−β

α̇

]
≥ 0 (6)

Usually, all dissipative mechanisms are associated with a change of the internal variables
(here: D and α). Considering a virtual state where the internal variables D and α are
fixed/freezed (i.e. Ḋ = 0 and α̇ = 0), the dissipation has to vanish. Therefore, term 1 in
Eq. (6) has to vanish independent of the value of ε̇. This is equivalent to the constitutive
assumption

σ =
∂ψe

∂ε
(7)

stating that the stress σ and the strain ε are thermodynamic conjugate. Inserting Eq. (2)
gives the specific expression for the stress tensor

3
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σ =
∂ψe

∂ε
=
(
1− 1

3
tr(D)

)
λ tr(ε)I︸ ︷︷ ︸

σλ

+µ

[(
I −D

)
ε+ ε

(
I −D

)]
︸ ︷︷ ︸

σµ

(8)

As already observed for the expression for the elastic part of the free energy, σλ is damaged
in an isotropic and σµ in an anisotropic manner. In the following the thermodynamic
conjugate forces of D and α are discussed. The thermodynamically conjugate quantity
of the damage tensor D is called damage driving force and is defined as

Y = −∂ψe

∂D
− ∂ψani

h

∂D
(9)

It consists of two parts, where the first part is denoted by Ye and is given by

Ye = −∂ψe

∂D
= 1

6
λ tr2(ε)I︸ ︷︷ ︸

=Y e
λ

+ µ ε2︸︷︷︸
=Y e

µ

(10)

It turns out that for the chosen ψe the damage tensor is not involved anymore in Eq. (10).
The anisotropic damage hardening force is defined as follows

Y ani
h =

∂ψani
h

∂D
(11)

where the definition of Y ani
h as positive derivative and Ye as negative derivative (cf.

Eq. (10)) lead to the resulting damage driving force given by

Y = Ye − Y ani
h (12)

As explained above, the reason for the introduction of the anisotropic damage hardening
is to ensure that the eigenvalues of the damage tensor do not exceed the value of one.
For this reason it makes sense to reduce the damage driving force in the directions where
the corresponding eigenvalues Di of the damage tensor approach the value one. Hence,
Y ani

h is subtracted from Ye. Two approaches for the anisotropic damage hardening are
investigated:

Y ani
h,1 =

3∑
i=1

Hani
h,1

〈
Di −D0

〉︸ ︷︷ ︸
Y ani
h,1

nD
i ⊗ nD

i︸ ︷︷ ︸
ND

i

(13)

Y ani
h,2 =

3∑
i=1

Hani
h,2

Di

n
√

1−Di︸ ︷︷ ︸
Y ani
h,2

nD
i ⊗ nD

i︸ ︷︷ ︸
ND

i

(14)

The first approach given by Eq. (13) utilizes the Macaulay brackets being defined as
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〈
x
〉
= (x+ |x|)/2. This approach is a straightforward extension of the penalty energy used

in Fassin et al. [10] for an isotropic damage model. The penalty parameter Hani
h,1 is usually

chosen as high value (e.g. Hani
h,1 ≥ 104 Nmm/mm3). If all eigenvalues Di are below the

critical damage value D0 (which is typically chosen to be close to one, e.g. 0.99999) the
anisotropic damage hardening remains zero. Once one of the eigenvalues has exceeded
D0 the anisotropic damage hardening force suddenly increases. A schematic illustration
of the suddenly increasing function Y ani

h,1 is depicted in Fig. 1a. The second investigated

approach Y ani
h,2 uses a smooth function which already slowly increases for small values of

Di, cf. Fig. 1b. Hence anisotropic damage hardening is present right from the beginning.
Since the suggested function Y ani

h,2 tends to infinity for Di → 1, the function is replaced
from point (Dr, Yr) by its tangent having the slope mr. But this is only a numerical
detail. The key point is that the second approach uses a smooth function which does not
become suddenly ’active’ like the first approach.
The thermodynamically conjugate quantity to the damage hardening variable α is denoted
by (cf. Eq. (6))

β = −∂ψ
iso
h

∂α
= −K1α (15)

Using the introduced abbreviations for the thermodynamically conjugate quantitites and
the constitutive assumption of Eq. (7) finally leads to the reduced dissipation inequality:

D =
(
Ye − Y ani

h

)︸ ︷︷ ︸
=Y

: Ḋ + βα̇ ≥ 0 (16)

At this point further constitutive equations are necessary to show that the second law of
thermodynamics is truly fulfilled. These constitutive equations will be provided in the
next section, where the evolution equations will be derived.

(a) suddenly increasing function Y ani
h,1 . (b) smooth function Y ani

h,2 .

Figure 1: Schematic illustration of the two investigated anisotropic damage hardening
functions Y ani

h,1 and Y ani
h,2 .
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2.3 Damage criterion and damage evolution

For the distinction between the elastic range and the damage range a damage criterion
is defined. This is in analogy to plasticity models where the distinction between the elastic
and the plastic range is given by the yield criterion. The damage criterion (also called
damage function) is assumed to take the form

f = ‖Y ‖ − (Y c
0 − β) (17)

Here, Y c
0 describes the initial threshold value for the onset of damage. Noteworthy, Y c

0

has units of energy. Thus, the onset of damage is energetically evaluated. Following the
principle of maximum dissipation yields the normality rule for the evolution equations of
the internal variables D and α (associative framework)

Ḋ = γ̇
∂f

∂Y
= γ̇

Y

‖Y ‖
(18)

α̇ = γ̇
∂f

∂β
= γ̇ (19)

The corresponding Kuhn-Tucker conditions read

γ̇ ≥ 0, f ≤ 0, γ̇f = 0 (20)

It turns out that the damage hardening variable α can be interpreted as accumulated
damage. From theoretical considerations it can be concluded that α ≤ 3 and ‖D‖ ≤

√
3.

Inserting the evolution equations into the reduced dissipation inequality (see Eq. (16))
finally yields

D = Y : Ḋ + βα̇ = Y : γ̇
Y

‖Y ‖
+ βγ̇ = γ̇ (‖Y ‖+ β)︸ ︷︷ ︸

Y c
0

≥ 0 (21)

where the product γ̇Y c
0 is always greater or equal to zero since the initial damage threshold

Y c
0 as material parameter is assumed to be greater than zero and γ̇ ≥ 0 (cf. Eq. 20).

2.4 Time discretization, residuals and linearization

The evolutions equations given by Eqs. (18) and (19) are discretized in time using the
implicit Euler method: α̇n+1 ≈ ∆α/∆t and Ḋn+1 ≈ ∆D/∆t, with ∆α = αn+1 − αn and
∆D = Dn+1 −Dn. Here, the indices n + 1 and n denote the current time step and the
last time step, respectively. By exploiting α̇ = γ̇ the time discretized form of Eq. (18) is
given by

D = Dn +4t∆α
4t

Y

‖Y ‖
= Dn + ∆α

Y

‖Y ‖︸ ︷︷ ︸
∆D

. (22)

where here and in the following the index n + 1 is omitted for brevity, i.e. all quantities
refer to the current time step n+1 if not explicitly denoted otherwise. The two considered
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residuals (cf. standard plasticity models) are then

r1 = −D +Dn + ∆α
Y

‖Y ‖
(23)

r2 = ‖Y ‖ − (Y C
0 − β) (24)

This system of equations is nonlinear in the local unknowns D and α. Therefore, a
linearization with respect to the local unknowns is carried out

r1 +
∂r1

∂D
: ∆D +

∂r1

∂α
∆α = 0 (25)

r2 +
∂r2

∂D
: ∆D +

∂r2

∂α
∆α = 0 (26)

This equation system with seven unknowns (six for ∆D and one for ∆α) has to be solved
until convergence is achieved.

3 NUMERICAL STUDIES

In order to show the behaviour of the presented anisotropic damage model in different
loading cases, various strain-controlled tests at integration point level are performed. The
material parameters of Table 1 are used. In total five material parameters are needed if
the model with the anisotropic damage hardening Y ani

h,1 is used and seven if the model

with Y ani
h,2 is used, where the parameter mr is only a numerical parameter.

Symbol Parameter value
E Young’s modulus 100000 N/mm2

ν Poisson’s ratio 0.3
Y c

0 damage threshold 0.01 Nmm/mm3

K1 isotropic damage hardening parameter 0.1 Nmm/mm3

Hani
h,1 anisotropic damage hardening parameter 104 Nmm/mm3

Hani
h,2 anisotropic damage hardening parameter 1.0 Nmm/mm3

n anisotropic damage hardening parameter 2.0
mr anisotropic damage hardening parameter 1010 Nmm/mm3

Table 1: Material parameters.

3.1 Uniaxial stretching

The first loading case is uniaxial stretching in x-direction, where the strain εxx is linearly
increased up to 20 ‰. All the other strain components are set to zero. As mentioned
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before, the situation when one eigenvalue of the damage tensor approaches the value one
is critical. For this reason the two anisotropic damage hardening functions Y ani

h,1 and

Y ani
h,2 (cf. Eqs. (13) and (14)) have been introduced. First, the behaviour of the model

using the suddenly increasing function Y ani
h,1 is discussed. The results for the normal stress

components σxx, σyy, σzz and the diagonal damage components Dxx, Dyy, Dzz are plotted
in Fig. 1a. The off-diagonal components of the stress and the damage tensor are equal to
zero in this example. The stress σxx increases up to the peak load, followed by a softening
up to point A, where a kink in the curve is observed. At this point the first eigenvalue
of the damage tensor reaches the value D0 = 0.99999. Clearly, this is the eigenvalue
corresponding to the loading direction (x-direction), namely D1 = Dxx. The values of
the other two damage components Dyy=Dzz≈0.2 are still quite low. In the following
path from point A to B the damage tensor is not further evolving (all components stay
constant in this regime). This is intended for the damage component Dxx which should
not further increase, but not for the components Dyy and Dzz. The damage components
Dyy and Dzz do not start to increase again before they reach point B, where a second
kink is observed in the curve. The reason for this behaviour can be found in the damage
function f = ‖Y ‖ − (Y c

0 − β). At point A where Dxx reaches D0 the xx-component
of the anisotropic damage hardening force Y ani

h,1 takes a high value since otherwise the
damage in this direction would continue rising. On the other hand β only depends on α
which is approximately constant at this point. At least β can not increase suddenly as
‖Y ‖ decreases suddenly due to the anisotropic damage hardening. The consequence is
an elastic region from point A to point B. At point B the elastic damage driving force
Ye increased sufficiently enough to reproduce f = 0. Moreover, it can be observed that
beginning from point A all normal stress components are equal. This is due to the fact
that the µ-term of the stress becomes zero as soon as Dxx becomes 1 (cf. σµ in Eq. (8)).
Noteworthy, the ’penalty’ parameter Hani

h,1 has to be chosen sufficiently high such that
the damage tensor eigenvalues truly do not exceed the value of one. Here, already a
value of Hani

h,1 = 104 is sufficient to ensure this. Since the stress-strain curves obtained

Figure 2: Uniaxial stretching using the anisotropic damage hardening Y ani
h,1 .
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Figure 3: Uniaxial stretching using the anisotropic damage hardening Y ani
h,2 .

with the anisotropic damage hardening function Y ani
h,1 are not satisfying due to the elastic

range occuring when one eigenvalue of the damage tensor reaches one, a second approach
for anisotropic damage hardening is investigated. This second function Y ani

h,2 does not
suddenly increase if a critical damage value is reached, but increases smoothly right from
the beginning (cf. Fig. 1). The results for the uniaxial stretching test described above are
given in Fig. 3. No kinks and elastic regions are observed and the damage components
evolve without stagnating during the loading. Further, the damage components approach
the value one asymptotically which was also not the case for the first presented approach.
It should be noted that due to the imposed loading the stress components σyy and σzz only
consist of the λ-term. This explains why the curves for these stress components approach
the curve of σxx for continued loading since the stress σxx also only consists of the λ-
term if the damage componnent Dxx has progressed close enough to one. Examiming
Fig. 3 reveals that the softening slopes of the stress-strain curves are quite flat. By means
of the parameter n (cf. Eq. (14)) it can be controlled how fast the anisotropic damage
hardening force increases when the eigenvalues Di approach the value one. A higher value
of n leads to a delayed increase to infinity for Di → 1. Consequently, the softening slope
gets steeper for higher n. Due to the demonstrated advantages of the smooth anisotropic
damage hardening function, the function Y ani

h,2 is used for the following numerical studies.

3.2 Pure shear loading

The second investigated loading case is a pure shear loading characterized by a linearly
increasing shear strain εxy up to 20 ‰. All the other strain components are prescribed to
be zero. The resulting stress and damage components are plotted in Fig. 4. Only the shear
stress component τxy is unequal zero. The stress-strain curve shows qualitatively the same
behaviour as already observed for the uniaxial stretching (cf. Fig. 3). The component Dxy

remains unexpectedly zero, where the two diagonal components Dxx = Dyy are unequal to
zero and effectuate the stiffness degradation. However, this behaviour can be explained
by taking into account that for the considered loading case with tr(ε) = 0 the elastic
damage driving force Ye has only two entries on the main diagonal. Furthermore, the
pure shear loading is identical with a biaxial tension-compression loading which can be
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Figure 4: Pure shear loading (using the anisotropic damage hardening Y ani
h,2 ).

easily shown with Mohr’s circle.

3.3 Shear loading in all directions

The third investigated loading case is a loading with shear in all three components, i.e.
the shear strains εxy = εyz = εxz are increased at the same time up to 20 ‰. All normal
strain components are set to zero. The resulting stress and damage components are plotted
in Fig. 5. The shear stresses τxy = τyz = τxz are positive and the normal stresses are not
equal to zero anymore, but are negative. This coupling between the shear strains and the
normal stresses becomes apparent when Eqs. (8) and (10) are analyzed closely. Shortly
before the normal stresses reach their maximum the components Dxy = Dyz = Dxz of
the damage tensor begin to decrease. This decrease can be explained by a change of the
principle directions of the damage tensor during the loading which finally ends up into
the state D = I. Although the components Dxy, Dyz, Dxz decrease during the loading,
the eigenvalues of the damage rate tensor Ḋ are always positive.

Figure 5: Shear loading in all directions (using the anisotropic damage hardening Y ani
h,2 ).
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4 CONCLUSIONS AND OUTLOOK

In this work an elatic anisotropic damage model for initially isotropic quasi-brittle
materials has been presented. The second order damage tensor is incorporated into the
elastic part of the free energy such that artificial stiffening effects can be excluded a priori.
Based on the second law of thermodynamics the constitutive law as well as the evolution
equations of the internal variabels are derived. Special focus was set on the bound of
the eigenvalues of the damage tensor. By means of anisotropic damage hardening it is
ensured that the eigenvalues do not exceed the value one. Eigenvalues greater than one
are not physical and would cause numerical troubles in addition. Two approaches for the
anisotropic damage hardening force are investigated: (i) a suddenly increasing function
and (ii) a smooth function. Exemplarily, it was shown with an uniaxial stretching test
that the first approach suffers from a spurious second elastic region which arises when
the first eigenvalue reaches one. The second approach with the smooth function performs
well and provides the desired stress-strain curves with continued softening at the critical
points characterized by Di → 1. Two more numerical examples (pure shear and shear
in all directions) demonstrate the behaviour of the model in two- and three-dimensional
loading cases.
It is commonly known that using finite element analysis in combination with standard
(local) damage models leads to mesh-sensitive results. Damage localizes into one element
row which leads to vanishing dissipation if the element size tends to zero. In order to
overcome this situation, a gradient extension of the presented model is pursued, which
will be described in detail in [11]. Moreover, future work will deal with the incorporation
of crack-closure (unilateral effect) as well as the consideration of anisotropic materials.
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