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Abstract. The paper examines the ability of two selected viscoplastic models to reproduce the
deterministic size effect in plain concrete specimens. The first one is the concrete damaged
plasticity model and it is available in the ABAQUS package. The second one is the Hoffman
viscoplastic consistency model and it is programmed in FEAP. Rate dependency existing in both
models serves as a localization limiter leading to mesh-objective results for reasonably high
values of viscosity, so the reproducing of the deterministic size effect is expected. Numerical
analysis is performed for notched and unnotched beams under three point bending using both
models. Additionally, the results are compared with the experiment made by Grégoire et al.

1 INTRODUCTION

The origin of the knowledge concerning the size effect in brittle and quasi-brittle materials
can be traced back to the works of Galileo. Nowadays the subject has matured and usually
a distinction is made between deterministic and stochastic size effects. In brittle and quasi-
brittle materials deterministic size effect is more important than the stochastic one originating
from the randomness of material strength [1]. There is extensive experimental evidence of the
deterministic size effect in concrete, e.g. [2, 3]. Since the development of fracture mechanics
the knowledge of size effect laws has also matured [4].

The ability of the both non-local integral or gradient (either in plastic or damage format)
models to recreate the size effect in numerical simulations for concrete is well known and docu-
mented [5, 6]. Much less research has been done for viscoplastic models. Such models, similar
to non-local or gradient models, can act as localization limiters and overcome in an effective
way the spurious mesh dependency appearing in numerical solution for elements made of plain
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concrete [7]. However, knowledge concerning their ability to reproduce the deterministic size
effect is limited.

The aim of the paper is a numerical examination of the deterministic size effect in three-
point bending for specimens made of plain concrete using two viscoplastic models. The first
one is the Concrete Damage Plasticity (CDP) model with optionally included viscous term. The
second one is the Hoffman viscoplastic consistency (HVP) model for concrete implemented in
FEAP code [8] by authors. In the paper a new modified version of this model is presented
assuming a non-associated flow rule with the plastic potential of the Drucker-Prager type. The
numerical results are compared with the experiments reported in [9]. Two types of concrete
beam specimens are analyzed – notched and unnotched.

2 REVIEW OF APPLIED MODELS

2.1 Concrete damaged plasticity model

The first model which is applied in computations was originally proposed in [10] and next
enhanced in [11]. This model is distributed by ABAQUS software and called therein "damaged
plasticity model for concrete and other quasi-brittle materials" [12], but here acronym CDP will
be used. The theory of the plastic flow is non-associated in the CDP model. An application of
viscous term and isotropic damage as additional components of the model is also possible.

The yield function is introduced in the stress space:

F p
CDP =

q + 3α p+ β(ε̃p) 〈σmax〉 − γ 〈−σmax〉
1− α

− σc(ε̃pc ) = 0 (1)

where p = −1
3
σii is the hydrostatic pressure and q =

√
3
2
sijsij is the Mises deviatoric measure

of stress tensor σ. The parameter α depends on the relation of the uniaxial compressive strength
f ′c to the biaxial compressive strength f ′bc. Function β(ε̃p) changes according to stress-strain
relationships defined separately for compression and for tension. The parameter γ decides about
the shape of the yield surface in the deviatoric plane. The subscript max refers to the maximum
principal stress, so 〈σmax〉 = 1

2
(σmax+ |σmax|). The example of the initial yield surface described

in the plane stress state is depicted in Fig. 1(a). The uniaxial compressive strength f ′c and the
uniaxial tensile strength f ′t and relation f ′bc = 1.16f ′c are according to the numerical analysis
presented in this paper, see Table 2 and Fig. 4. Plastic potential in the CDP model flow is defined
as follows:

Gp
CDP =

[
(e f ′t tanψ)

2 + q2
]1/2

+ tanψ p (2)

where e is the eccentricity of the plastic potential flow and ψ is dilatancy angle. This function
is illustrated in Fig. 1(b) in the p− q plane for the exemplary data: e = 0.1 (that value is default
in ABAQUS for CDP), f ′t = 3.88 MPa and ψ = 15◦.

In this paper the CDP model is equipped with a viscoplastic regularization according to the
Duvaut-Lions approach [13] for the viscoplastic strain rate ε̇vp:

ε̇vp = (εp − εvp) /µ (3)

2
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(a) Yield surface F p
CDP in initial stage. (b) Plastic potential Gp

CDP.

Figure 1: Exemplary yield and plastic potential functions for CDP model.

The viscous term for plastic strain εp activates if only the relaxation time parameter µ is larger
than zero. The theory of plasticity described above can be combined with isotropic damage, but
this coupling is not employed in the computations presented in the paper.

2.2 Hoffman viscoplastic consistency model

Usually the viscoplastic models follow the approaches proposed by Perzyna [14] or Duvaut-
Lions [13] in which the viscoplastic strains are defined in explicit way using the viscosity pa-
rameter (relaxation time). A quite different approach was proposed by Wang [15] and called
the consistency viscoplasticity. In the consistency viscoplasticity the yield function can expand
or shrink depending on the actual viscoplastic strain rate. The stress state is forced to remain on
the yield surface and the consistency condition is invoked. There is no need for an additional
equation defining a viscoplastic multiplier. Instead, in the consistency condition two separate
generalized material moduli appear: a classical plastic one h and a viscoplastic one s.

The Hoffman viscoplastic consistency (HVP) model for concrete uses the Burzyński-Hoffman
yield surface in its isotropic form which has been successfully employed in the analysis of con-
crete structures [16]:

F vp = q2 − 3p(fc − ft)− fcft = 0 (4)

The yield surface (at the beginning of plastic processes) is presented in Fig. 2 (the plane stress
state and p− q plane) for the data given in Table 2.

It is assumed that two internal variables κc and κt exist which are both functions of the
equivalent viscoplastic strain. They describe in a separate way hardening/softening behaviour
in compression and tension, respectively. In addition, two more internal variables ηc and ηt
determine the increase/decrease of compressive and tensile strengths due to the actual rate of
the equivalent viscoplastic strain. Thus, the actual compressive and tensile strengths are:

fc = fc(κc, ηc) and ft = ft(κt, ηt) (5)

3
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(a) Initial yield surface in plane stress state. (b) Initial yield surface on p− q plane.

Figure 2: Exemplary yield function F vp for HVP model.

The rates of the internal variables depend on the current stress and the rates of internal vari-
ables κ and η:

κ̇c = gc(σ)κ̇ and κ̇t = gt(σ)κ̇ (6)

η̇c = gc(σ)η̇ and η̇t = gt(σ)η̇ (7)

In the above equations gc and gt are scalar functions of stress accounting for independent pro-
cesses of damage in compression and tension.

In turn, κ̇ is defined as an equivalent viscoplastic strain (in the rate form) assuming work
hardening, and in a similar way η depends on the first derivative of the viscoplastic strain (i.e.
its rate is a function of the second derivative):

κ̇ = (σ : ε̇vp) /q and η̇ = (σ : ε̈vp) /q (8)

The dependence of fc on κc and ηc is formulated in a general way as:

fc = f ′cHc(κc)Sc(ηc) (9)

where f ′c is the initial compressive strength. Similarly, the actual tensile strength is:

ft = f ′t Ht(κt)St(ηt) (10)

Specific forms of these functions used in this paper are presented in Fig. 5.
The strain rate is decomposed into its elastic and viscoplastic parts:

ε̇ = ε̇e + ε̇vp (11)

and the generalized Hooke’s law is valid for the elastic part:

σ̇ =D : ε̇e (12)

4
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The viscoplastic flow is defined similarly to the classical rate independent plasticity using a
notion of the plastic potential:

ε̇vp = λ̇m where m =
∂Gvp

∂σ
(13)

In the original version of the consistency model for concrete [17] the associated flow rule was
assumed:

Gvp ≡ F vp (14)

There is an ample evidence that for concrete (at least for larger values of the hydrostatic pressure
p) that the associated flow rule leads to excessive plastic dilatancy – much larger than encoun-
tered in experiments [18]. As a remedy, the plastic potential in a form of the Prager-Drucker
surface is proposed, where ψ is the dilatancy angle:

Gvp = q + tanψp (15)

At this stage of the development the examples presented in this paper, however, are computed
using the original version of the model in its associated form.

In order to establish the viscoplastic multiplier λ̇ the consistency equation is used, which in
its final form reads:

Ḟ vp = n : σ̇ − hλ̇− sλ̈ = 0 (16)

where n = ∂F vp/∂σ, h is the classical generalized plastic modulus and s is the generalized
viscoplastic modulus. Due to the last term the consistency equation is no longer an algebraic
equation for the viscoplastic multiplier, but a differential equation of the first order, to be solved
for an appropriate initial condition. In the case when the functions Sc and St are constant, their
derivatives vanish and Eq. (16) reduces to the form known from the classical rate independent
plasticity.

3 BEAM UNDER THREE POINT BENDING – NUMERICAL STUDY

3.1 Geometry and material model data

In the paper the size effect for viscoplastic models is verified for the beam test under three
point bending. The geometry and material data as well as comparison with experimental results
are taken from [9]. Two options are considered, i.e. the beam with and without the notch.
The dimensions for all specimens are given in Table 1. Numerical simulations are performed
for a half of the domain due to the symmetry, see Fig. 3. The mesh density is consistent with
the sizes of the configuration, so the magnitude of finite elements changes proportionally to
the geometry of specimens. Plane stress is assumed. Thickness t = 50 mm is constant for all
simulations. Displacement control is employed in numerical analyses. Four-noded elements
with full integration are used as in the simulations in [9].

The material data for both models are listed in Table 2. In each model stress–strain relations
for tension and compression are defined separately. The postcracking function for tension in the
CDP model is determined as linear softening. It starts with strength f ′t = 3.88 MPa and goes
to residual strength 0.01f ′t for ultimate strain εcrtu = 0.002. Stress–inelastic strain function for

5
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Table 1: Beam test – geometry.

Specimen Length L Total height D Ligament height Dlig Span S Measurement base Lm

[mm] [mm] [mm] [mm] [mm]
DN1 1400 400 320 1000 400
DN2 700 200 160 500 200
DN3 350 100 80 250 100
DN4 175 50 40 125 50
DU1 1400 400 1000 400
DU2 700 200 500 200
DU3 350 100 250 100
DU4 175 50 125 50

(a) FE mesh for symmetric half of notched
beam (N).

1
2Lm

(b) Symmetric half of unnotched beam (U)
with FE mesh.

Figure 3: Beam test under three point bending.

Table 2: Beam test – material model parameters.

Young’s modulus: E = 37000 MPa Tensile strength: f ′t = 3.88 MPa
Poisson’s ratio: ν = 0.21 Compressive strength: f ′c = 42.3 MPa

CONCRETE DAMAGED PLASTICITY (CDP) HOFFMAN VISCOPLASTICITY (HVP)
Relation for compression: Fig. 4 Material function Hc: Fig. 5(a)
Postcracking for tension: linear softening Material function Ht: Fig. 5(b)
Ultimate tensile strain: εcrtu = 2.0× 10−3

Viscosity parameter: µ = 2.0× 10−4 s Material function Sc = St: Fig. 5(c)
Dilatancy angle: ψ = 15◦ Work hardening Eq. (8)

compression is shown in Fig. 4. Dilatancy angle ψ equals 15◦. It is assumed that viscous term
is activated in this model via parameter µ = 0.0002 s. The other model parameters are defaults,
according to [12]. If the HVP model is taken into account, functions Hc(κc) for compression
and Ht(κt) for tension are also defined in different ways, cf. Figs 5(a) and 5(b). However,
functions of the equivalent viscoplastic strain rate, i.e. Sc(ηc) for compression and St(ηt) for
tension, remain the same in these two regimes, see Fig. 5(c).
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Figure 4: Stress–inelastic strain relation for compression applied in CDP model.
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Figure 5: Material functions for Hoffman viscoplasticity.

3.2 Results for concrete damaged plasticity

The results for the CDP model are discussed at first. Fig. 6(a) shows of total force applied to
the beam with the notch versus crack mouth opening displacement (CMOD). They are depicted
for specimens DN1–DN4 and compared with experimental diagrams taken from [9]. It is seen
that the load carrying capacity obtained for the CDP model is quite close to the experimental
result, however the character of post-peak equilibrium paths is different. Numerical results
give more ductile response and tending in the post-peak phase to a residual plateau rather than
ceasing to zero. The CDP model exhibits a strong size effect reproducing behaviour of plain
concrete specimens in experiments in a good manner. In the diagrams presented in Fig. 6(b)
so-called ligament stress is calculated in the following way:

σlig =
3

2

F S

t (Dlig)2
(17)
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Figure 6: Beam with notch – diagrams for CDP model.
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(a) Specimen DN1. (b) Specimen DN2. (c) Specimen DN3. (d) Specimen DN4.

Figure 7: Beam with notch– distribution of equivalent tensile plastic strain (PEEQT) in final state for CDP model.
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Figure 8: Unnotched beam – diagrams for CDP model.

(a) Specimen DU1. (b) Specimen DU2. (c) Specimen DU3. (d) Specimen DU4.

Figure 9: Unnotched beam – distribution of equivalent tensile plastic strain (PEEQT) in final state for CDP model.

where F is the force, S is the span, t is the thickness and Dlig is the ligament height in the notch
region of the beam. Horizontal strain is obtained from the CMOD divided by the base Lm.
Fig. 7 presents contour plots of the distribution of the equivalent tensile plastic strain (PEEQT)
for four beam sizes.

Analogical results, but for the unnotched beam are depicted in Figs 8 and 9. It is observed
that the load carrying capacity is overestimated in comparison to experiment [9], see Fig. 8(a).
Here the so-called pseudo-CMOD is measured at the bottom surface between points Lm away
from each other. In Fig. 8(b) nominal stress is derived according to Eq. (17), but now the total
heightD is taken into account. Again, the size effect is noticed. Fig. 9 illustrates the distribution
of the equivalent tensile plastic strain (PEEQT) for all specimens DU1–DU4.
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Figure 10: Ligament/nominal stress vs average strain diagrams for CDP model without active viscous term, µ = 0.

The diagrams presented in Fig. 10 are prepared for the CDP model without active viscous
term, i.e. the relaxation time parameter µ equals 0. It means that in these computations local
version of the model is employed and as expected the size effect does not occur.

3.3 Results for consistency viscoplasticity

Fig. 11 presents the diagrams for the HVP model in case of the beam with the notch. Com-
puted post-peak equilibrium paths shown in Fig. 11(a) are much stiffer than the experimental
results and very slowly tend to zero. The size effect is barely visible, see Fig. 11(b). Contour
plots of the parameter κt which describes the equivalent plastic strain in tension are illustrated
in Fig. 12. These crack patterns are noticeably different from those obtained for the CDP model
(cf. Fig. 7) and seem to be not physically motivated. When viscous functions Sc = St given
in Fig. 5(c) are artificially increased 3.6 times the size effect becomes more evident (Fig. 13),
however still remains much smaller than that from the experiment.

The results for unnotched beams are shown in Figs 14–15. The size effect manifests itself
only at the peak and just after it all curves overlap, see Fig. 14(b). In this case contour plots of
the internal variable κt in Fig. 15 also differ from the results computed for the CDP model.

When the viscous term is excluded by setting Sc = St ≡ 1.0 the size effect is absent as
expected, see the diagrams in Fig. 16. However, the larger maximum stress obtained for the
beam with the notch is to the contrary to the experimental evidence.
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Figure 11: Beam with notch – diagrams for HVP model.
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(a) Specimen DN1. (b) Specimen DN2. (c) Specimen DN3. (d) Specimen DN4.

Figure 12: Notched beam – distribution of internal variable κt in final state for HVP model.
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Figure 13: Beam with notch – diagrams for HVP model with more active viscous term.
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Figure 14: Unnotched beam – diagrams for HVP model.

4 CONCLUSIONS

It is well-known that non-local constitutive models are capable of reproducing the deter-
ministic size effect due to the presence of an internal length parameter. In concrete damaged
plasticity (CDP) and Hoffman viscoplastic consistency (HVP) models it is done via activation
of the viscous term. In the paper these viscoplastic models are confronted on the example of the
beam with and without the notch. Comparison of the size effect for both models and also ex-
perimental data [9] is depicted in Fig. 17. Logarithmic scale is used for both axes. They behave
in different ways. The CDP model exhibits a pronounced size effect not only for the reached
maximum strength, but also in the post-peak regime, i.e. different values of the fracture energy
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(a) Specimen DU1. (b) Specimen DU2. (c) Specimen DU3. (d) Specimen DU4.

Figure 15: Unnotched beam – distribution of internal variable κt in final state for HVP model.
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Figure 16: Ligament/nominal stress vs average strain diagrams for HVP model without active viscous term,
Sc = St ≡ 1.0.

 1

 1.5

 2

 2.5

 1  2  4  8

Experiment [9]

HVP HVP,10CDP

log [DN(i)/DN4]

lo
g
(σ

li
g
/f
′ t)

i = 4 3 2 1

(a) Beam with notch.

 1

 1.5

 2

 2.5

 1  2  4  8

HVPCDP

log [DU(i)/DU4]

lo
g
(σ

n
om
/f
′ t)

i = 4 3 2 1

Experiment [9]

(b) Unnotched beam.

Figure 17: Size effect plots.

as the parameter of ductility are noticeable. The response of the HVP model is not clear in the
context of the size effect. In the beam test with notch the size effect for the initial adopted data
is invisible. The ability of the model in this regard is demonstrated for functions of the equiv-
alent viscoplastic strain rate Sc = St with a higher limit value, i.e. when the viscous term is
more active. Significant disagreement of softening zones between two considered viscoplastic
models is noticed, so in the HVP model the non-associated flow rule should be introduced and
further parametric studies are therefore necessary.
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