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Abstract. A non-boundary conforming method for numerical simulation of compressible 
flows over moving obstacles on unstructured meshes is presented. The Brinkman penalization 
method is used to satisfy the boundary condition on the fluid-structure interface. It allows to 
consider the problem in simply connected domains and to keep the same higher-accuracy 
edge-based scheme everywhere including the regions around moving obstacles. The method 
is applied to simulate forced and induced oscillations of two-dimensional cylinder and flow 
over pitching and plunging NACA0012 foil. The numerical results are compared with the 
available experimental data. 
 
 
1 INTRODUCTION 

Fluid-structure interaction processes are an exciting and rapidly growing research field 
because of the wide range of applicability in different technological areas. This research 
direction gained much attention from scientists and engineers over the past decades. 
Nowadays there are various approaches to numerical simulation of flow interaction with 
moving structures. New engineering challenges require their further development and 
improvement, which becomes more feasible thanks the rapid growth of performance of 
modern supercomputers.  

Some of these methods are based on analytical and semi-empirical models [1, 2]. Another 
wide class of methods uses the body-fitted meshes and commonly operates in moving 
reference frames or involves coordinate transformations [3, 4]. This approach presents a 
significant difficulty for complex geometries of fluid-structure interfaces and especially for 
systems of bodies that are prone to large motions and deformations. 

Among the non-boundary conforming approaches the immersed boundary methods 
pioneered by Peskin seem more attractive to handle moving bodies of complex geometries 
[5,6]. Within this approach the body position and its movement over a computational domain 
are controlled by an external force field that is prescribed by time-dependent source terms in 
the governing equations. Further we refer to this method as IBC (immersed boundary 
condition). 

In the present work we use an IBC method, namely the Brinkman penalization method, to 
mimic the no-slip boundary conditions on the interface between a moving body and 
compressible viscous fluid. The method is developed for unstructured meshes. Its main 
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advantage with respect to other immersed boundary penalty methods consists in controlling 
the boundary approximation error through the value of penalization parameter [7]. 

The immersed boundary penalty techniques are widely used for incompressible flow 
simulations [7], [8]. In particular, it has been proved that the solution of the penalized Navier-
Stokes equations for incompressible flow converge to the one of the original Navier-Stokes 
problem while the penalization parameter goes to zero [9]. The papers [10, 11] applied the 
IBC approach to simulating compressible flows, however the problems under consideration 
concerned immovable or uniformly moving bodies.  

Within the presented approach, the immersed boundary method is used for simulating 
fluid-structure interaction phenomena on unstructured meshes. It is applied for bodies moving 
under external or vortex-induced forces. Although the 2D formulations are considered, the 
algorithm can be naturally extended to 3D cases.  

A special attention is paid to predicting the forces acting on the obstacles since the 
provision of sufficient accuracy at the solid-fluid interfaces is the most challenging problem 
for the immersed boundary methods. 

The developed approach is implemented in the in-house code NOISEtte [12]. The 
numerical algorithm is built basing on the higher-accuracy edge-based schemes [13] and the 
second order implicit Newton-based method for the time integration. 
 
2 COMPUTATIONAL APPROACH 

For calculating the aerodynamic characteristics of the body, moving under the action of 
external or induced aerodynamic forces, we use the following mathematical model: 

− flow of a viscous compressible fluid is governed by the Navier-Stokes system; 
− motion of a rigid body under the action of external or induced aerodynamic forces is 

modeled by the harmonic oscillator equation.  
At the interface between the two media (solid BΩ  and fluid fΩ ), the no-slip condition is 
imposed: 
 

B∂Ω
=u V  (1)  

where V  is the velocity of the mass center of the body and u  is the velocity of the fluid. The 
boundary condition (1) is provided by the Brinkman penalization method, which doesn't 
require explicit matching of the mesh nodes to the solid boundary. To this end, special penalty 
functions are added to the Navier-Stokes system. These functions differ from zero only at the 
nodes of the computational grid that lie in the region B B BΩ = Ω ∪∂Ω  (inside and on the solid 
boundary). The Navier-Stokes system with Brinkman penalty terms is 
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The last terms in the momentum and energy equations determine the penalty, where 
the function χ  defines the geometry of a solid at each moment: 
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The parameter 1η  determines the rate of relaxation of the flow velocity to the velocity 
of the moving body. The value of the penalization parameter  410−  is used for all simulations 
in this paper. 

The numerical solution of system (2) is based on the following approaches. The convective 
fluxes are approximated using a scheme based on the quasi-one-dimensional reconstruction of 
the variables along a grid edge (EBR scheme, see [13], [14], [15]). The spatial discretization 
is based on the vertex-centered formulation, which means that all the unknown variables are 
determined at nodes surrounded by computation cells (dual mesh). 

The viscous terms in the Navier–Stokes system are approximated using the finite-element 
method with linear basis functions (P1 Galerkin). 

The time integration is performed using an implicit second-order scheme followed by the 
Newtonian linearization of the space-discretized system of equations. At each Newtonian 
iteration stage the corresponding system of linear equations is solved by Biconjugate gradient 
stabilized method. 

The motion of a solid body with one degree of freedom (in-line motion) exposed to 
excitations by a fluid flow, is described by the harmonic oscillator equation 
 2 ymy m y k y F+ ζω + =   (3)  
where y  is the displacement, m  is the structure mass per unit length, ζ  is the damping 
coefficient of the structure, ω   is the circular natural frequency of the structure without fluid 
surrounding it and k  the stiffness parameter. The force yF  denotes the force per unit length 
exerted on this body. This force is the sum of the inertial force IF  and drag force DF . The 
inertial force is due to the fluid acceleration, and the drag force is associated with relative 
velocity. For a wide class of oscillating flows the force yF  can be represented by the Morison 
equation [16], [17] 

 ( ) ( )1
2

M
y a dF AU c A U y U y U y Dc= ρ + ρ − + ρ − − 

   . (4)  

Here ρ  denotes the fluid density,  A the cross-sectional area, U  the excitation velocity, and D 
is a characteristic length of the structure. Two force parameters are included in this equation, 
the drag coefficient dc  and the added-mass coefficient ac . The first two terms on the RHS of 
(4) correspond to the inertial force, and the third one gives the drag. Further equation (4) is 
used to verify the computational results. 

In this paper the two types of solid motion in fluid are considered: 
1) the body motion is prescribed according to ( )tx = G ; 
2) the law of motion is determined by equation (4). 

For problems of the first type to advance from the n-th time step to the (n+1)-th time step 
the following algorithm are used:  
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− computation of the coordinate and velocity of the mass center at time 1nt + : 

( ) ( )1 1 1 1,n n n n
B

dt t
dt

+ + + += =
Gx G u ; 

− finding the new position of the solid boundary; 
− solving system (2) by the fully implicit scheme and calculating variables for time 1nt + . 

For problems of the second type the modified Navier-Stokes system (2) and the body 
motion equation (3) are jointly solved:  

− computation of the coordinates and velocity of the mass center at time 1nt +  by the 

explicit first-order scheme: ( )1 2n n n n n
B B y B

t F k y
m

+ ∆
= − − ζω −u u u , 1 1n n n

By y t+ += − ∆ u ; 

− finding the new position of the solid boundary; 
− solving system (2) by the fully implicit scheme and calculating variables for time 1nt + . 

According to the papers [7] и [10], by the asymptotic expansion with respect to the small 
parameter η , the force of body excitation by the fluid is expressed as 

 ( ) ( ) ( )1

B B B B

B
B B B B Bp dS dV dV dV

t η
∂Ω Ω Ω Ω

∂ρ
= − − ⋅ = + ∇ ⋅ ρ ⊗ + ρ −
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uF n S n u u u u



.  (5)  

Formula (6) is a generalization for the variable velocity Bu  of the formula obtained in [10] for 
the constant velocity.  The proposed method is applied to simulation of the test problems initially formulated for 
incompressible flows. The mean pressure (in the dimensionless variables) ( )21 Mp = γ  

is 
found from the equation of state for the ideal compressible fluid. The Mach number is small, 
M 0.05= , which guarantees that the deviation of density from the mean value is also small, 

( )21 MOρ = + , which approximates the conditions in an incompressible flow. 
 
3 RESULTS AND DISCUSSION 

3.1 Forced vibrations of a cylinder 
The interaction of an oscillating circular cylinder with a quiescent fluid is considered. The 

position of the mass centre is determined by the simple harmonic oscillation 
( )( ) sin 2y t A f t= − π . There are two parameters in the problem: maxRe 100U D= ν =  – the 

Reynolds number and c maxK 5U D f= =  – the Keulegan-Carpenter number. Here D  is the 
cylinder diameter, maxU  is the maximum velocity of the cylinder motion and f  is the 
frequency of imposed replacement. Taking the maximum velocity and cylinder diameter as 
characteristic quantities, the dimensionless frequency and displacement amplitude are defined 
as 1 0.2cf K= =  and ( )1 2A f= π , correspondingly.  
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Figure 1: Velocity profiles for different phase angles: 180 , 210  and 330   
 
The computational domain is [ 10.0,15.0] [ 10.0,10.0]− × − . Two different meshes with 

characteristic cell sizes 0.02h∆ =  and 0.004h∆ =  (coarse and fine meshes) are used.  
In Figure 1 the velocity profiles at four locations along x -axis for different phase angles 

are shown. In general the results agree with experimental data from [18], the same 
discrepancy is observed in the results of numerical simulation using accelerated reference 
frames moving with the body [18].  

The computed instant in-line force variation is shown in Figure 2 on coarse and fine 
meshes (IBC method). These results are compared with the result of simulation on body-fitted 
mesh in the moving reference frame (BF method). Computations using IBC and BF methods 
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are performed with the same numerical scheme. 
 

 

Table 1: Comparison of drag and added mass 
coefficients for forced vibrations of the cylinder 

 

 dc  ac  

Fine mesh 2.043 1.433 

Coarse mesh 2.036 1.440 

Dütsch, 1998 2.09 1.45 
Figure 2: In-line force computed on different mesh 

 
Applying dimensionless equation (4) to the oscillatory motion of a circular cylinder in a 

quiescent fluid, the in-line force ( )yF t  acting on the cylinder can be expressed as 

 ( ) 1 ( ) ( ) ( )
2 4

M
y d aF t c y t y t c y tπ

= − −   . (6)  

Substituting the computed force yF  into equation (6), motion-averaged coefficients dc  and 

ac  are found using the least-squares method. Computed values of dc  and ac  presented in 
Table 1 are slightly dependent on the mesh size and in a good agreement with results from 
[18].  

The in-line force  ( )M
yF t  calculated using equation (6) and the values of dc  and ac  from 

Table 1 are shown in Figure 2. As seen from the figure the force value provided by the 
numerical simulation even on the coarse mesh is better than predicted by equation (6).  

 

3.2 Vortex-induced vibrations of a cylinder  
A two-dimensional cylinder has one degree of freedom and is allowed to move only in the 

cross-stream direction. The uniform external flow with velocity flowU  is imposed in x -
direction. The Reynolds number is set to Re 100flowU D= ν = . The cylinder is free to move 
in y -direction from the beginning of integration in time. The computation is continued until a 
periodic state of constant maximum amplitude is reached. 

The movement is induced by the lifting force generated by the flow and is modelled as a 
forced oscillator (4), where 5m = , 0ζ = , 8.74k =  and yF  is the flow force evaluated using 
(5). These values of parameters m , b , k  are chosen to compare the computational results 
with calculations from [2] where numerical simulations were done by viscous-vortex method. 

In Figure 3 the computed lift coefficient and replacement of a cylinder are shown. The 
cylinder oscillates in phase with the lift force and the maximum value of replacement is 
approximately equal to half of its radius. This agrees with the results obtained in [19]. The lift 
coefficient is calculated using the force components defined by the vorticity in the boundary 
layer and wake and doesn't include the inertial component due to the structure acceleration 
(added mass force). 
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The computed values of replacement amplitude A , lift force amplitude ( )L rms
C , mean drag 

value DC  and Strouhal number are in a good agreement with the numerical results from [2], 
as seen from Table 2. 

 

 

 

Table 2: Comparison of results 
for vortex-induced cylinder 

vibrations  

 
Present 
study 

D.Shiels, 
2001 

A  0.55 0.57 

( )L rms
C  0.6 0.5 

DC  2.17 2.26 

St  0.2 0.194 
 

Figure 3: Lift coefficient for a vortex-induced cylinder vibrations (top) 
and cylinder displacement (bottom) as a function of time 

 

3.3 Pitching and plunging airfoil 
To verify the method for a more complicated structure geometry and motion law the flow 

over flapping foil is computed. The result is analyzed in terms of time-averaged and time-
dependent aerodynamic loads. 

A NACA0012 foil, with the chord length 1c = , oscillates with plunging and pitching 
mechanisms as shown in Figure 4-a. Here the replacement ( )0( ) sinh t h t= ω  corresponds to 
the vertical plunging motion with amplitude 0h  and linear frequency 2f = ω π . The foil 
pitches around one-third chord with pitch angle defined as ( )0( ) sint tθ = θ ω +ψ , where 0θ  
denotes the pitch amplitude and ψ  is the phase angle between the pitching and plunging 
motion. 

Following an experimental test case by Anderson et al. [20] the plunging amplitude 0h  is 
set to 0.75 , phase angle ψ  is set to 2π  and the Reynolds number is set to 

40 000flowU cρ µ = . The computations were carried out for different values of the Strouhal 
number: 0.25 , 0.35 , 0.45 . For 2ψ = π  the pitching amplitude 0θ  is expressed as 

( )0 0arctg Stθ = π −α   where 0α  is a nominal angle of attack which is set to 15 .  
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a b 
Figure 4:  (a) Scheme of the foil pitching and plunging oscillation. (b) Instant drag coefficient 

 
The instant drag coefficient in one period of oscillations with the Strouhal number fixed at 

0.35St = correlates with the results of [21] where moving reference frame method is used 
(Figure 5a). The discrepancy is caused by using the non-boundary conforming approach. In 
the case of moving structures this approach produces high-frequency oscillations of the lift 
and drag coefficients primarily because the mesh nodes change their type (i.e. a mesh node 
falls either into solid region or fluid region) from time step to time step. To reduce these 
unphysical oscillations the FFT smoothing is used.  

A good agreement between numerical and Anderson experimental results is corroborated 
by Figure 5-a,b where measured and predicted mean thrust and power coefficients are shown. 

The mean thrust coefficient is expressed as ( )
0

2 T

T xC F t dt
T

= ∫  and the mean input power as 

( ) ( ) ( ) ( )
0 0

2 T T

ip y

dh t d t
C F t dt M t dt

T dt dt
 θ

= + 
 
∫ ∫ . 

  

  
b c 

Figure 5: Pitching and plunging NACA0012 foil. (a) Mean trust coefficient. (b) Mean power coefficient. 
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12 CONCLUSIONS 
The paper presents a method for the numerical simulation of fluid-structure interaction 

using non-boundary conforming unstructured meshes. The mathematical model is based on 
the compressible Navier-Stokes equations and exploits the Brinkman penalization technique 
to mimic the influence of structure on a flow. The presence of moving structures is controlled 
by the time-dependent force term in the governing equations and does not complicate the 
existing computational algorithm that is based on the higher-accuracy EBR schemes.  

In order to illustrate the efficiency of the proposed method, three two-dimensional cases 
with increasing complexity are considered. All the cases are well documented with a great 
number of available experimental data and numerical results. The first two cases consider the 
cylinder oscillations at Re=100 caused either by external or vortex-induced forces. In the third 
case the pitching and plunging motion of NACA0012 foil at Re=40000 is simulated.  

It should be noted that the usage of the immersed boundary methods for moving obstacles 
requires highly refined meshes in the regions of possible motion trajectories, in order to 
provide the required (or, at least, acceptable) mesh resolution in the boundary layers formed 
around the streamlined bodies. This is a weakness of the method. However it can be overcome 
by the dynamic mesh adaptation. Moreover, the immersed boundary approach allows to 
operate in simply connected domains which opens a possibility to use efficiently adaptive 
moving mesh methods. It is a direction of current and future work.  

The usage of unstructured meshes, while complicating the numerical algorithm, lets us 
handle complex geometries and provides wider options for adaptive mesh technologies which 
is of crucial importance for simulating flow over moving bodies. 
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