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Abstract. In preparation of the study of liquefied natural gas (LNG) sloshing in ships
and vehicles, we model and numerically analyse compressible two-fluid flow. We consider
a five-equation two-fluid flow model, assuming velocity and pressure continuity across two-
fluid interfaces, with a separate equation to track the interfaces. The system of partial
differential equations is hyperbolic and quasi-conservative. It is discretised in space with
a tailor-made third-order accurate finite-volume method, employing an HLLC approximate
Riemann solver. The third-order accuracy is obtained through spatial reconstruction with a
limiter function, for which a novel formulation is presented. The non-homogeneous term is
handled in a way consistent with the HLLC method. We study the one-dimensional case of
a liquid column impacting onto a gas pocket entrapped at a solid wall. It mimics the impact
of a breaking wave in an LNG containment system, where a gas pocket is entrapped at the
tank wall below the wave crest. Furthermore, the impact of a shock wave on a gas bubble
containing the heavy gas R22, immersed in air, is simulated and compared with experimental
results. The computational results are consistent with the experimental results.

1 Introduction

In this paper we study a model that describes the flow of two fluids. Both fluids are
assumed to be compressible, inviscid and non-heat-conducting. Furthermore, no chemical
reactions or phase changes occur. Analysis of this type of fluid flow has various industrial
applications, including sloshing inside LNG tanks [4].

Five-equation models are obtained by assuming velocity and pressure equilibrium across
the material interfaces. We use the Kapila model [9]. Another, equivalent formulation has
also been proposed [20, 11]. We apply a finite-volume method to the system, ensuring
the global numerical conservation of mass, momentum and energy. At each finite-volume
interface we apply the HLLC approximate Riemann solver to calculate the fluxes [19]. In the
exact two-fluid flow formulation we may have a sharp material interface, which is seriously
diffused when applying a first-order accurate numerical scheme. Therefore, we employ higher-
order spatial reconstruction to the finite-volume method, using the MUSCL approach [12].
To prevent spurious oscillations a limiter is used. We introduce a new limiter and compare
it to some standard ones.
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2 Mathematical model

A well-known two-fluid flow model is the Baer-Nunziato seven-equation model [1]. It
consists of two systems of conservation laws, one for each of the two fluids. To complete the
model, another equation, describing the presence and proportion of each of the two fluids, is
required: the equation for the volume fraction. The Kapila model is a reduced form of the
Baer-Nunziato model. Kapila et al. [9] argue that for many applications the time scale of
equilibration of both velocity and pressure differences across material interfaces is sufficiently
small to assume thermodynamic equilibrium. This allows the model to be reduced to one
consisting of five equations: four conservation laws (two for mass, one for energy and a vector
equation for momentum), and a non-conservative equation for the volume fraction of one
of the fluids. The latter contains a non-conservative term due to energy exchange between
the fluids. The volume fraction α is defined as the fraction of a control volume which is
occupied by fluid 1. It takes the value 1 at a point in space and time (x, t) if (x, t) is located
fully within fluid 1, and 0 when it is fully within fluid 2. At the two-fluid interface α takes
intermediate values, leading to a diffused interface. The density ρ, specific total energy E
and specific internal energy e are decomposed using the volume fraction α:

ρ = αρ1 + (1− α)ρ2, E = E1αρ1/ρ+ E2(1− α)ρ2/ρ, e = e1αρ1/ρ+ e2(1− α)ρ2/ρ. (1)

Because of the pressure and velocity equilibrium across two-fluid interfaces, considering two
spatial dimensions, we assume

p = p1 = p2, u = u1 = u2, v = v1 = v2, (2)

with p the pressure and u and v the velocity components in the x- and y-direction, respec-
tively. The Kapila system in two dimensions is given by

∂

∂t
q +

∂

∂x
f +

∂

∂y
g = s, (3)

q =


ρ
ρu
ρv
ρE
ρβ
α

 , f =


ρu

ρu2 + p
ρuv

u(ρE + p)
αρ1u
αu

 , g =


ρv
ρuv

ρv2 + p
v(ρE + p)
αρ1v
αv

 , s =


0
0
0
0
0

(α− φ)(ux + vy)

 . (4)

Here φ := α(1 − α)
ρ1c21−ρ2c22

(1−α)ρ1c21+αρ2c22
is a parameter depending on the compressibilities of the

fluids, and ci is the speed of sound in fluid i. This system needs to be closed with an equation
of state (EOS) for each of the fluids, relating the pressure, density and internal energy. Here
we will consider the perfect gas EOS, and the stiffened gas EOS, respectively:

ei =
p

ρi(γi − 1)
, ei =

p+ πiγi
ρi(γi − 1)

, (5)

where γi is the ratio of specific heats, which is a material constant, and πi is another material
constant needed to describe liquids.
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2.1 The Kapila system of equations

The system (3) can be expressed in primitive variables ρ, u, v, p, α, β, resulting in,

∂

∂t
w + A

∂w

∂x
+ B

∂w

∂y
= 0, (6)

w =


ρ
u
v
p
α
β

 , A =



u ρ 0 0 0 0
0 u 0 1

ρ
0 0

0 0 u 0 0 0
0 ρc2 0 u 0 0
0 φ 0 0 u 0
0 0 0 0 0 u

 , B =



v 0 ρ 0 0 0
0 v 0 0 0 0
0 0 v 1

ρ
0 0

0 0 ρc2 v 0 0
0 0 φ 0 v 0
0 0 0 0 0 v

 . (7)

Here, c is the speed of sound of the mixture, obtained from Wood’s relation [21]:

1

ρc2
=

α

ρ1c2
1

+
1− α
ρ2c2

2

. (8)

The eigenvalues of A and B are u − c, u, u + c and v − c, v, v + c, respectively, where the
eigenvalues u and v are both quadruple. The eigenvalues are all real-valued, making the
system hyperbolic.

3 Numerical approach

We consider the Kapila system (3) in integral form, at some point in time, say t:

∂

∂t

∫
Ω

qdΩ +

∮
Γ

[f , g] · ndΓ =

∫
Ω

sdΩ, (9)

with Ω a control volume and Γ its boundary. We divide the computational domain into
equal rectangular cells with width ∆x and length ∆y, average state qi,j and average source
term si,j. In semi-discrete form we then have

d

dt
qi,j = − 1

∆x

(
fi+ 1

2
,j − fi− 1

2
,j

)
− 1

∆y

(
gi,j+ 1

2
− gi,j− 1

2

)
+ si,j. (10)

The basic numerical method for (10) is the first-order accurate Godunov method with forward
Euler time integration, yielding:

qn+1
i,j = qni,j +

∆t

∆x

(
F(qni−1,j,q

n
i,j)− F(qni,j,q

n
i+1,j)

)
+

∆t

∆y

(
G(qni,j−1,q

n
i,j)−G(qni,j,q

n
i,j+1)

)
+ ∆t sni,j, (11)

with ∆t the time step and F,G the Riemann fluxes. Both the flux computation and the
time integration will be performed in a more accurate manner, as outlined in the following.
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3.1 Spatial discretization

To achieve higher-order spatial accuracy we perform spatial reconstruction, known as the
MUSCL (Monotone Upstream-centred Scheme for Conservation Laws) approach [12]. We
present it here for the one-dimensional case. The formulation is easily extended to two- and
three-dimensional cases, treating the fluxes in each of the separate directions in a locally
one-dimensional fashion. To make the scheme monotone we apply a slope limiter ϕ to the
primitive variables wi [12]:

wL
i+ 1

2
= wi −

1

2
ϕL
i+ 1

2
(wi −wi−1), wR

i+ 1
2

= wi+1 −
1

2
ϕR
i+ 1

2
(wi+1 −wi+2), (12)

with L and R the left and right side of cell face i + 1/2, respectively. We apply a limiter
function to each of the primitive variables individually. In the next step the Riemann problem
is solved for the limited variables to obtain the flux:

Fi+ 1
2

= Fi+ 1
2
(q(wL

i+ 1
2
),q(wR

i+ 1
2
)). (13)

The limiter has the function of blending a higher-order method of our own choice, for smooth
regions of the solution, and the first-order method, for regions with steep gradients. It is
defined as a function of the adjacent slopes of each of the individual primitive variables:

ϕL
i+ 1

2
= ϕ(rL

i+ 1
2
), ϕR

i+ 1
2

= ϕ(rR
i+ 1

2
), with rL

i+ 1
2

=
wi+1 −wi

wi −wi−1

, rR
i+ 1

2
=

wi −wi+1

wi+1 −wi+2

. (14)

Spekreijse [16] outlined sufficient conditions for the limiter to ensure preserving of mono-
tonicity of the method. They can be put in the form:

m ≤ ϕ(r) ≤M, −M ≤ ϕ(r)

r
≤ 2 +m, ∀r ∈ R. (15)

The choice of the parameter M , if chosen to be greater than 1, causes a time-step restriction.
In order for the method to be second-order accurate, ϕ(1) = 1 must hold and ϕ must
be two times continuously differentiable around r = 1 [16]. Considering (15), this means
m ∈ [−1, 0]. A new property we highlight here is a good handling of negative values of
r, especially around r = −1, which corresponds to extrema. Often, the parameters in the
monotonicity condition of Spekreijse are chosen to be m = 0 and M = 2. This leads to a
region in the r, ϕ-plane, called the Sweby TVD (total variation diminishing) region [17]. A
well-known class of schemes is formed by the van Leer κ-schemes [12], which correspond to
ϕ(r) = 1−κ

2
+ 1+κ

2
r, κ ∈ [−1, 1]. They are second-order accurate, and for κ = 1

3
third-order

accurate, but not monotone. The Koren limiter [10] follows the κ = 1
3
-scheme as much as

possible inside the second-order Sweby region. It reads:

ϕ(r) =

{
0, r ≤ 0,

min
(
2r,min

(
1
3

+ 2
3
r, 2
))
, r > 0.

(16)
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Here we propose an extended κ = 1
3
-limiter, which for a range of negative r-values around

r = −1 coincides with κ = 1
3

as well:

ϕ(r) =

{
min(0,max(−2

3
, 1

3
+ 2

3
r)), r ≤ 0,

min(4
3
r,min(1

3
+ 2

3
r, 2)), r > 0.

(17)
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Figure 1: The limiters ϕ(r) considered herein. On the left we see the Koren limiter inside
the second-order Sweby region, on the right the new limiter, inside the Spekreijse region for
M = 2 and m = −2

3
.

To illustrate the effect of limiters, we compare them for the linear advection equation
in one dimension, with two initial conditions, a discontinuous one and an infinitely smooth
one. The initial solutions move undistorted at a constant velocity. The domain has periodic
boundary conditions, so the exact solution after an integer number of periods is equal to the
initial solution. We numerically calculate with 80 finite volumes, and we see that all limiters
result in a positive, but much sharper resolution of the traveling discontinuities than the
first-order upwind method. The minmod limiter, i.e., the lower bound of the second-order
Sweby region is the most diffusive, as can be clearly seen in Figure 2. The superbee limiter,
i.e., the upper bound of the second-order Sweby region is the most accurate. However, it
may give false steepening of smooth profiles, as can also be seen in Figure 2. The Koren
limiter and the new limiter are in between these two extremes.

3.2 HLLC Riemann solver

To compute the fluxes, instead of an exact Riemann solver, we apply an approximate
Riemann solver, the HLLC scheme. We present this method for the x-direction, the y-
direction is treated analogously.

The HLLC scheme assumes four regions of constant states separated by three discontin-
uous waves. The variables in the middle two regions are denoted with a superscript *. The
outer two states are taken as the limited primitive variables on either side of the cell face
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R. de Böck, A.S. Tijsseling and B. Koren

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

u

Exact discrete solution

First order upwind

Minmod limiter

Superbee limiter

Koren limiter

New limiter

0.5 0.6
0

1
×10-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

u

Exact discrete solution

First order upwind

Minmod limiter

Superbee limiter

Koren limiter

New limiter

0.45 0.55
0

0.1

Figure 2: Comparison of various limiters and their effect on the linear advection, over 5
periods, of a discontinuous (left) and an infinitely smooth (right) initial condition.

considered. We denote them with subscripts L and R. We will work with the following
estimates for the wave speed of the three wave fronts [3, 19]:

SL = min(uL − cL, (u− c)Roe), SR = max(uR + cR, (u+ c)Roe), (18)

SM =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
. (19)

Here, the superscript Roe denotes Roe averaging, which is defined through the density,
velocity and enthalpy (H := E + p

ρ
):

ρRoe =
√
ρLρR, uRoe =

√
ρRuR +

√
ρLuL√

ρR +
√
ρL

, HRoe =

√
ρRHR +

√
ρLHL√

ρR +
√
ρL

. (20)

Furthermore, following the model’s underlying assumptions, we impose

u∗L = u∗R = SM , p∗L = p∗R = p∗. (21)

To obtain q∗
L and q∗

R we solve the Rankine-Hugoniot conditions:

SKq
∗
K − f(q∗

K) = SKqK − f(qK), (22)

with K = L,R, across each wave front. Next we determine the flux at the cell interface
(x = 0). We define four fluxes. The choice of the final flux is based on the direction of the
wave speed estimates:

F =


f(qL), SL, SM , SR ≥ 0,

f(q∗
L), SR, SM ≥ 0, SL < 0,

f(q∗
R), SR ≥ 0, SL, SM < 0,

f(qR), SL, SM , SR < 0.

(23)
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The flux F is calculated for every cell interface and complemented with fluxes at the edges
of the domain resulting from the boundary conditions.

3.3 Non-conservative volume fraction term

The non-conservative term in (10), containing the right-hand side of the sixth equation of
(3) is handled in an HLLC-type way, as proposed in [8]. In the x-direction this is done by:

Sni = (αi − φi) (ui+ 1
2
− ui− 1

2
), u =


uL, SL, SM , SR ≥ 0,

SM , SR ≥ 0, SL < 0,

uR, SL, SM , SR < 0.

(24)

The y-direction is handled analogously.

3.4 Time integration

We implement an explicit third-order accurate Runge-Kutta method with Butcher tableau
[7]:

0

1 1
1
2

1
4

1
4

1
6

1
6

2
3

(25)

This time integrator was studied in [15], where it was shown to be a TVD Runge-Kutta
method [13], meaning that the TVD property of the explicit Euler method extends to this
time integrator.

3.5 Initial and boundary conditions

In the following, two types of boundary conditions will be considered: one representing
a solid wall and the other a free outflow. The numerical implementation of this is done by
adding virtual cells around the edges of the domain. Then, a (trivial) Riemann problem is
solved, as is done in the interior cells, to determine the fluxes and the non-conservative term.

In the case of an outflow boundary condition, the state in the virtual cell is copied from
the adjacent cell.

The solid wall is modeled by reflection; the state in the adjacent cell is copied, with the
exception of the velocity component normal to the cell boundary, which changes sign. This
results in a trivial Riemann problem, with either two identical shock waves or two identical
rarefaction waves. The propagation velocity of the middle wave is zero. The only nonzero
flux is in the momentum equation, due to the pressure.

In order to preserve strict positivity of the volume fraction, including round-off effects, we
need to take a precaution in the initial condition for the volume fraction. In regions where
a pure fluid is present, we take the values of α not to be 0 and 1, but ε and 1− ε, for some
small value of ε, 10−10 herein, representative for round-off.
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3.6 Inertial forces

In the next section we will consider a liquid piston, accelerated by gravity g. This is
modeled by adding a source term to the model (3) (in one spatial dimension):

∂

∂t
q +

∂

∂x
f = s + sg, sg =

[
0, ρg, ρgu, 0, 0

]T
. (26)

In numerical calculations of sg we naturally take the cell averages of ρ and u.

4 Extended Bagnold model

In the original work of Bagnold [2] wave impacts are modeled by a solid piston with
an initial velocity, moving towards a wall, with an ideal gas trapped in between. The
problem then depends on only two parameters: the adiabatic constant of the gas γg and
the dimensionless Bagnold number SB. We consider a generalized Bagnold model [4], which

Figure 3: Sketch of extended Bagnold model.

consists of a closed tube, containing a liquid in between two gas layers. The liquid piston is
driven by a body force, for instance gravity. The situation illustrated in Figure 3 is simulated
using the numerical scheme outlined in the preceding section. This is done using 150 finite
volumes and a CFL number of 0.49. The process is considered to be adiabatic and reversible.
An exact solution can be found [4, 18] if the liquid is considered to be incompressible. In the
model, the situation is completely described by five dimensionless numbers: length aspect

ratio L0

h0
, density ratio

ρ0g
ρ0l
, impact number

ρ0l gL0

p0
, liquid compressibility p0

ρ0l (c0l )
2 and adiabatic

constant of the gas γg in the perfect gas EOS (5), where the index 0 refers to the initial
conditions.

The model is scaled in such a way that these dimensionless quantities remain the same.
Brosset et al. [4] discuss this model in detail. We compare the numerical results for a number
of benchmark cases [5] and we plot the pressures in Figure 4. The pressures of the two-fluid
flow model and the piston-gas model [4] in Figure 4 coincide exactly. Furthermore there is
complete similarity of cases 1 and 5. The piston-gas model assumes an incompressible liquid,
whereas in the two-fluid flow model it is compressible. The difference is clearly seen in Figure
5 when increasing the impact number (through g). The compressibility of the liquid clearly
softens the impact.

5 Shock-bubble interaction

Haas and Sturtevant [6] performed experiments with a cylindrical bubble, contained within
a very thin nitrocellulose film, filled with a gas, being hit by a shock wave. We consider the

8
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Figure 4: Comparison of the two-fluid flow model and the piston-gas model for the five test
cases from [5].
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Figure 5: Comparison of the two-fluid flow model and the Bagnold model with increased
impact numbers.

case in which the bubble is filled with of a heavier gas than the surrounding air. The
experiment produced a number of shadow photographs which clearly show what happens to
the bubble. This has become a benchmark for numerical simulation of compressible two-fluid
flows [14, 11]. We numerically simulate the situation on a 356× 960 rectangular grid with a
CFL number of 0.24. The new limiter is used. Numerical tests have shown that this allows
us to take the value of ε introduced in Section 3.5 to be 10−10, whereas the other limiters
require a value of ε = 10−5 in order to preserve positivity.

The symmetry in the y-direction is utilized to simulate only half of the domain. For the
case of a heavy gas in the bubble, R22, the bubble acts as a convergent optical lens. It gets
compressed, and later, due to the velocity difference across its interface, instabilities arise.
This is also seen in the results of the numerical simulation.
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Figure 6: Results for the Haas-Sturtevant test case. Top: shadow photographs of the exper-
iment, bottom: corresponding bulk density distributions from the numerical simulation.

6 Conclusion

In order to numerically simulate two-fluid flows, a novel numerical scheme has been de-
veloped for the quasi-conservative five-equation Kapila model. The HLLC approximate
Riemann solver is applied to the conservative equations, whereas the non-conservative term
is handled in an HLLC-type way. Spatial reconstruction is applied to achieve higher-order
accuracy. This requires a limiter function, for which we introduce a new version. The nu-

10
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merical method is applied to liquid impact on a gas pocket, and is tested for interaction of
a shock wave with a bubble, showing its potency to handle both types of problems. The
newly introduced limiter proves to be better than its alternatives at preserving positivity at
high accuracy.
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