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Abstract. We propose a stochastic programming method to analyse limit and shakedown of 
structures under random strength with lognormal distribution. In this investigation a dual 
chance constrained programming algorithm is developed to calculate simultaneously both the 
upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based 
smoothed finite element method (ES-FEM) using three-node linear triangular elements is used. 

 
 
1 INTRODUCTION 

In course no. 299 at the Centro Internazionale Scienze Meccaniche (CISM) in Udine in Italy 
direct plastic design of structures has been proposed with probabilistic and fuzzy modelling of 
uncertainties [1], [2]. Both use the Tresca yield function and limit analysis which determines 
the plastic collapse load under monotonic loading by linear programming. The probabilistic 
model can be modelled by chance constrained programming. Only a normal distribution has 
been assumed so that an equivalent deterministic problem could be formulated. The methods 
found little attention because of the numerical difficulties of chance constrained programs for 
realistic distributions. 

We have generalized the approach to shakedown analysis for plastic design under time-
variant loading and could show how it relates to the methods of structural reliability. The more 
realistic von Mises yield function is assumed which leads to nonlinear programming. First we 
have considered only uncertain material data [3]–[5].The approach has been still restricted to 
normal distributions which are not well suited to material strength which is non-negative. 

The present contribution investigates the more realistic lognormal distribution for uncertain 
strength data [6]. The duality of the primal and dual program is used to derive deterministic 
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equivalents. An outlook to open problems, further developments and alternative approaches is 
given. Design codes and probabilistic design are compared in [6]. 

2 RANDOM STRENGTH WITH LOGNORMAL DISTRIBUTION 

The problem of shakedown analysis of structures under random strength with normal 
distribution was solved successfully in [5]. However the strength of material is a positive 
quantity. Therefore the normal distribution is not so suitable to model the random strength 
variable. In this section, a lognormal distribution is chosen as model of the random strength. 
We employ a smoothed FEM discretisation as described in more detail in [5], [7], [11]. 

2.1 Lower bound approach to chance constrained programming 

Starting from the discretized form of the deterministic formulation the lower bound load 
factor    is the maximum of all safe load factors  : 
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in which ˆ
iB  denotes the smoothed FEM deformation matrix, Ne  is the total number of edge in 

the problem domain, k  is the number of vertices of the load domain, ir  is the strength of the 

material in sub-domain sharing the edge i . The first constraint of 
Fehler! Verweisquelle konnte nicht gefunden werden. describes the self-equilibrium 
condition of time independent residual stresses iρ  and E

ikσ  denotes the vector of elastic stress 

in an infinitely elastic material. The second constraint describes the von Mises yield condition. 
Consider the situation that the strength of the material is not given but must be modelled 

through random variables ( )r r   in a certain probability space. Under uncertainty, the 

inequalities of are not always satisfied, the probability that the thi  yield condition is satisfied is 
required to be greater than some reliability level i . Problem (1) becomes an individually 

chance constrained programming problem: 
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In this work, random strength is assumed to follow a lognormal distribution. Random variables ir  

are said to be lognormally distributed if their logarithm is normally distributed. We write 
2ln( ) ~ ( , )i i ir    or ( , )i i ir    . Here ,   are called parameter of lognormal distribution, 

they relate with mean m  and variance v  as follows 
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Let us consider the thi  individual chance constraint of (2): 

   Prob + ( ) 0 Prob ( ) 0E
ik i i i i if r f r          σ ρ  (4)

After some transformations we can write (4) as follows: 
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Introducing a new variable 1( )i i    so that ( )i i   , inequality (5) becomes: 

 ln
( )i i

i
i

f



 

   
 

 (6)

Because   is monotonic thus 
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From (8) we have: 

i i i
if e   . (8)

Finally we get an equivalent deterministic formulation of the static approach for lognormally 
distributed strength: 
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2.2 Upper bound approach to chance constrained programming 
The deterministic shakedown problem can be formulated based on Koiter’s theorem. The 

ES-FEM formulation is written in the following normalized form with the von Mises plastic 
dissipation rate: 
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If the strength follows log-normal distribution, ( , )i i ir    , the objective function of 

the kinematic problem is a stochastic variable. We can state the problem in such a way that one 
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looks for a minimum lower bound   of the objective function under the constraint that the 
probability   of violation of that bound is prescribed ([8], [9] ) 
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For the case of lognormally distributed random strength ( )ir   there is no existence of closed 

form probability distribution for the sum  
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Either an approximate probability distribution is derived mathematically or the assumption 
that a sum of independent lognormal random variables is also lognormally distributed is used 
and the sum is approximated by a single lognormal random variable [10]. 

The probability distribution of the plastic dissipation ( )pD   in (13) and thus the 

transformation of (12) into an equivalent deterministic form can only be obtained as an 
approximation. Nevertheless, there is a duality between lower bound and upper bound 
formulation. Consequently, one can assume the equivalent deterministic of (12) as (14) 
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By duality we can prove that the maximum problem (10) and the minimum problem (14) are 
dual to each other. This mean (14) is the equivalent deterministic of (12).The primal and dual 
problem can be written in a unified for normally distributed or Primal problem (14) and dual 
problem (10) can be solved simultaneously by dual algorithm which was presented in [5], [7], 
[11].  
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3 NUMERICAL APPLICATIONS 

3.1 Two span continuous beam 

We first consider the two span continuous beam with rectangular cross-section. The beam is 
subjected to two point forces as shown in figure 1. This test is investigated analytically by 
Sikorski and Borkowski in [1] for the deterministic problem and for normal distributions. The 
numerical solution for the case of random strength with normal distribution was obtained in [5]. 
Let us determine the limit load factor in situation: Loads are deterministic with 1 3kNP  , 

2 2kNP  . The strength is lognormally distributed with the mean values 0,1 2.0kNmM  , 

0,2 3.0kNmM   which correspond to the first and the second span. The given partial reliability 

levels are 0.9999s p    so that 1 1 1( ) ( ) (0.9999) 3.719r r p p             .  

The analytical solution was investigated in [5] for the deterministic plastic moment and 
normally distributed plastic moment, limit load factor  

0,1
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2 

3kN 1m
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PL
 

  


 (14)

If the plastic moment 0,1M  is lognormally distributed with 0,1E 2kNmM     and 

     22

0,1Var 0.1m 0.2kNmM   , respectively. Then the parameters of the lognormal 

distribution are computed using (3): 0.6882; 0.0998   . 
For the chosen reliability level ( 3.719  ) the limit load factor is: 
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In table 1 our results are shown in comparison with the results of Sikorski and Borkowski 
[1]. The limit loads in [1] and the analytical limit loads are based on beam theory and are 
therefore different from the numerical limit loads which are based on plane stress FEM 
discretization. 

 

Figure 1: Two-span beam and FE mesh with T3 elements 
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Figure 2: Convergence of the limit load factor in case of deterministic and random strength. 

The figure 1 shows the two-span beam with its FE mesh. The beam is modelled by 1350 T3 
elements. In figure 2 the convergence of the limit load factors is shown for some cases of 
random strength. The convergent numerical solutions are 2.19, 1.51, 1.38 for deterministic, 
lognormal distribution and normal distribution of strength, respectively.  

The dependence of load factors on the coefficient of variation   and on failure probability 
are presented in figures 3, 4. 



Ngọc T. Trần, Hermann G. Matthies, Georgios E. Stavroulakis and Manfred Staat 

 
7

 

Figure 3: Dependence of load the factor on the coefficient of variation   

 
Figure 4: Dependence of the load factor on the failure probability 

 



Ngọc T. Trần, Hermann G. Matthies, Georgios E. Stavroulakis and Manfred Staat 

 
8

Table 1: Limit load factor of the two-span beam 

Lower bound - Upper bound - Method, reference 

2.19 (deterministic) 2.19 (deterministic) numerically [5] 

2 (deterministic) 2 (deterministic) analytically [5]  

1.15 (normal) 1.36 (normal) [1] 

1.38 (normal) 1.38 (normal) numerically [5] 

1.256 (normal) 1.256 (normal) analytically [5] 

1.509 (lognormal) 1.509 (lognormal) numerically 

1.373 (lognormal) 1.373 (lognormal) analytically 

 

3.2. Simple frame 

In the second example, we investigate a simple frame which is depicted in Figure 7. The left 
side of beam component can move only in horizontal direction. The frame carries uniormly 
distributed loads which can vary independently in the load domain as shown in figure 4.11b. 
The loads are considered as random variables which are considered to be distributed normally. 
The geometrical and material data are chosen as in [12], i.e. 52 10 MPaE   , 0.3  , and 

10MPay  .  1 1.2,3.0p   and  2 0.4,1.0p  . The frame is discritized by 1600 smoothed T3 

elements as shown in Fig. 7. 
 

Figure 7: The geometrical dimensions and FE-mesh 
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Figure 8: Limit load factor with random strength, deterministic loads. 

 
Figure 9: Shakedown load factor with random strength, deterministic loads. 
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Table 2: Limit analysis: comparison  

 Garcea et al. [12]  Present 

1 2( , )p p  Deterministic  Deterministic Normal Lognormal 

(1.2, 1.0) 2.975  2.930 1.793 1.963 

(3.0, 0.4) 2.831  2.985 1.856 2.045 

(3.0, 1.0) 2.645  2.705 1.697 [5] 1.856 

 

Table 3: Shakedown analysis: comparison  

 Garcea et al. [12]   Present 

Limits Deterministic  Deterministic Normal Lognormal 

Elastic 1.203  1.192 0.749 0.819 

Alternating 2.940  2.922 1.835 2.006 

Ratcheting 2.473  2.521 1.582 [5] 1.730 

 
Figure 8 and 9 show the evolutions of limit and shakedown load factors for case (a) for both 

situations: deterministic and random strength. For limit analysis with 1 23.0, 1.0p p  , all the 

two bounds converge to the solutions lim 2.705   in case of deterministic strength and 1.856 

in case of lognormally distributed strength. For the shakedown analysis, the results give the 
shakedown load factors 2.521   and 1.730   corresponding to deterministic and 
lognormally distributed random strength, respectively. Tables 2-3 present results in comparison 
with deterministic results of Garcea et al. [12] 

4 RELIABILITY ANALYSIS OF STRUCTURE BY FORM 

In the stochastic programming approach we have prescribed a reliability level and calculated 
the load factor. In structural reliability the failure probability is calculated for a given load 
factor. In order to find the relation between both approaches we consider briefly the First Order 
Reliability Method (FORM), which has been used in [5], [13] to calculate failure probabilities 
in limit and shakedown analysis. For more detail, see the given references. 

We discuss the reliability of the two-span beam with log-normal distributions. Let the plastic 
moment 0,1M  be lognormally distributed with the above mean value m  and variance v  and let 

the load 1P  be deterministic. The parameters  ,  of 0,1 ( , )M     can be computed from 

the mean value m  and the variance v  using eq.(3). 
The limit state function with the property 

 
0 for failure,

0 for limit state,

0 for safe structure.

g





X  (16)
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of the beam is   1
0,1 0,1 0

3

P L
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   . Its natural logarithm has also the propterty (16): 
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With realizations  yuu  of the new standard normal random variable U  it may be written 
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Using  ,   from eq. (3), we have the reliability index   which is the distance of the plane 

  0Lg u  from the origin in the standard normal space: 

1 1.373 3kN 1m
ln 0.6882kNm ln

3 3
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P L
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and the failure probability is     43. 1 1 107 9fP        . In this case comparing with 

the reliability  1 0.9999fP        we have   . 

5 CONCLUSIONS 

- For engineering design, structural reliability is a post-design problem while stochastic 
programming is a pre-design problem. In the simple case of only one uncertain strength 
variable or only one random load variable, reliability analysis is “invers” to chance 
constrained programming and can be used to check the latter. In the same way 
numerical reliability analysis can be used to check any constrained programming 
solution for normally or lognormally distributed variables. It is found that the load 
factor decreases quickly with increasing coefficient of variation of the strength and 
load. 

- One result is that the load factors for normally distributed strength is always larger than 
for lognormally distributed strength. Therefore, working with the simpler normal 
distribution will give safe results which is most important for engineering applications. 
This makes the method more transparent to many engineers and it is easily extended 
to the case that the strengths in different points of the structure are correlated 
(stochastic field).  



Ngọc T. Trần, Hermann G. Matthies, Georgios E. Stavroulakis and Manfred Staat 

 
12

REFERENCES 

[1] Sikorski K.A. and A. Borkowski, A. Ultimate load analysis by stochastic programming. In 
D.L. Smith (ed.) Mathematical programming methods in structural plasticity. Springer 
Wien, New York, (1990) pp. 403–424. 

[2] Chuang, P.-H. and Munro, J. Fuzzy linear programming in plastic limit design. In D.L. 
Smith (ed.) Mathematical programming methods in structural plasticity. Springer Wien, 
New York, (1990), pp. 425–435. 

[3] Tran, N.T., Tran, T.N., Matthies, H.G., Stavroulakis, G.E., and Staat, M. Shakedown 
analysis of plate bending under stochastic uncertainty by chance constrained programming. 
In M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.): ECCOMAS Congress 
2016, VII European Congress on Computational Methods in Applied Sciences and 
Engineering. Crete Island, Greece, 5–10 June 2016, Vol. 2, pp. 3007-3019. 

[4] Tran, N.T., Tran, T.N., Matthies, H.G., Stavroulakis, G.E., and Staat, M. FEM shakedown 
of uncertain structures by chance constrained programming. PAMM (2016) 16(1):715–
716, 2016. 

[5] Tran, N.T., Tran, T.N., Matthies, H.G., Stavroulakis, G.E., and Staat, M. Shakedown 
analysis under stochastic uncertainty by chance constrained programming. In O. Barrera, 
A. Cocks, and A. Ponter (eds.) Advances in direct methods for materials and structures. 
Springer, Cham, (2018), 85-103. 

[6] Nadolksi, V. and M. Sykora, M. Uncertainty in resistance models for steel members,” 
Trans. VŠB – Tech. Univ. Ostrava, Civ. Eng. Ser., (2014) 14(2):26–37. 

[7] Tran, T.N., Nguyen-Xuan, H., Nguyen-Thoi, T., and Liu, G.R. An edge-based smoothed 
finite element method for primal-dual shakedown analysis of structures. Int. J. Numer. 
Methods Eng. (2010) 82:917–938, 2010. 

[8] Charnes A. and Cooper, W.W. Chance-constrained programming. Manage. Sci. (1959) 
6(1):73–79. 

[9] Charnes A. and Cooper, W.W. Chance constraints and normal deviates. J. Am. Stat. Assoc., 
(1962) 57(297): 134–148. 

[10] Rook, C. and Kerman, M. Approximating the sum of correlated lognormals: An 
implementation. (2015) Available SSRN http://dx.doi.org/10.2139/ssrn.2653337  

[11] Trân T.N. and Staat, M., An edge-based smoothed finite element method for primal-dual 
shakedown analysis of structures under uncertainties. In G. de Saxcé, A. Oueslati, E. 
Charkaluk, J.-B. Tritsch (eds.) Limit state of materials and structures, vol. 2, Springer, 
Dordrecht (2013) pp. 89–102. 

[12] Garcea, G., Armentano, G., Petrolo, S., and Casciaro, R. Finite element shakedown 
analysis of two-dimensional structures. Int. J. Numer. Methods Eng. (2005) 63(8): 1174–
1202. 

[13] Heitzer. M. and Staat, M. Probabilistic limit and shakedown problems. In M. Staat and M. 
Heitzer (eds.) Numerical methods for limit and shakedown analysis. Deterministic and 
probabilistic approach. NIC Series Vol. 15, John von Neumann Institute for Computing, 
Jülich (2003), pp. 217–268. 


