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Abstract. For aircraft actuation systems, the use of an online diagnostic tool to detect
the system damages at their early stages could be exploited to optimize the condition-
based maintenance planning, with improvements in safety and operating costs. This
paper proposes a computational strategy for the online diagnostics of actuation systems
faults, combining an optimal sampling strategy with different approaches for parameter
identification and exploiting the information gathered from different numerical models of
the system to estimate its health status. The method leverages low dimensional represen-
tations of the quantity to monitor using a signal compression method, based on Proper
Orthogonal Decomposition and Self-Organizing Maps, to speed up the solution of the
parameter identification problem with the limited hardware resources available onboard.
The method is tested for the fault detection of an electromechanical actuator for aircraft
flight control systems.

1 INTRODUCTION

The growing complexity of current and next generation aircraft systems is progressively
increasing the maintenance-related costs. The traditional approach, based on a priori
scheduling of maintenance intervention, has to face the great variety of failure modes
related to the large number of heterogeneous subsystems and components on board the
vehicles, resulting in a poorly accurate and highly inefficient estimation of the system
useful life. Great improvement would be achieved by implementing methods and strategies
for the continuous evaluation of the Remaining Useful Life (RUL) of components, based
on their current health condition. This way, the substitution of Line Replaceable Units
(LRUs) could be scheduled with great accuracy and the mission profile of the aircraft
could be adapted to its health status, to avoid overstressing components, reduce the costs
associated with maintenance, and increase safety [1, 2].
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The first step necessary for a precise system RUL estimation consists in the Fault
Detection and Identification (FDI) phase, aimed at the acquisition of the system health
status with the highest possible accuracy, detecting faults in their early stages, before
they start affecting the system performance [3]. Traditional FDI algorithms imply the
acquisition, storage and processing of significant amount of data, which is not compatible
with the real time execution needed for a continuous RUL estimation. Moreover, this
task shall be executed on the limited hardware resources available on board, which lack
both the amount of memory needed to store the measured data and the processing power
necessary to identify a fault in a useful time.

In this paper, we propose a methodology to perform an accurate and computationally
efficient FDI for a dynamical system. This strategy relies on a multifidelity approach,
combining the information acquired through different models of the system, with a dif-
ferent level of complexity, employed in different phases of the procedure. During the
offine phase, a High Fidelity (HF) model is employed to compute the reference data and
learn about the system behavior in different faulty conditions. Then, Proper Orthogonal
Decomposition (POD) [4, 5, 6] and Self Organizing Maps (SOM) [7, 8, 9] are combined
to identify an optimal placement of sampling points, and to obtain an informative com-
pressed representation of the quantities to measure and monitor online. The online phase
consists in a standard parameter identification problem, in which the inputs of a Low
Fidelity (LF) model are adjusted to match the response of the physical system. In par-
ticular, we consider two different LF representations of the system, namely a simplified
dynamic model of the actuation system to monitor (LF1) and a library-based emulator
of the signal to measure (LF2).

The purpose of this work is to obtain and process a compressed representation of the
signal to monitor in order to reduce the dimensionality of the parameter identification
problem online. The aforementioned optimal sampling technique is combined with dif-
ferent methods for the parameter identification problem, to assess the performances in
terms of accuracy and computational time. We adopt the proposed methodology to ad-
dress the FDI problem for an electromechanical actuation system of an aircraft flight
control system, affected by multiple mechanical and electrical damages.

2 PROBLEM SETUP

Electromechanical Actuators (EMAs) are a class of actuation systems which exploit
electrical power to control the position of a mechanical component, such as an aircraft
flight control surface, referred to as the user. Their architecture is usually composed
by an electric motor driving the user through a high gear ratio mechanical gear-box;
the user position is measured by a sensor, consisting in either a potentiometer, a Linear
Variable Differential Transformer (LVDT), or an optical encoder, and fed back to the
control electronics, which determines the voltage applied to the motors according to the
difference between commanded and actual user position.

The use of EMAs in place of the more traditional hydraulic actuator is gradually spread-
ing in a number of airborne applications, ranging from the primary flight control system of
small to medium Unmanned Aerial Vehicles, to secondary and backup functions on larger
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aircraft. The implementation of these systems can lead to an overall weight reduction at
aircraft level [10], eliminating the need of a centralized hydraulic system; on the other
hand, the presence of a complex mechanical transmission between the motor and the final
user (i.e. aerodynamic surface) introduces the risk of mechanical jamming as a potential
failure mode, which is virtually impossible for hydraulic systems. This eventuality leads
to the impossibility to control the aircraft, which can result in catastrophic accidents. For
this reason, an active and continuous health monitoring is important to enable the use of
EMAs on flight critical functions without reducing the system safety.

We consider an EMA for the flight control system of a light aircraft consisting in a three
phase brushless motor, a four stages epicycloidal gear-box, an LVDT as the user position
transducer and a control and power electronics board. We face the problem of detecting
the health status of the EMA, as a set of parameters which represent the most common
fault modes [11]. Those faults are chosen for their relatively high rate of occurrence,
among the ones characterized by a slow and progressive growth. The levels of severity of
each damage is encoded in the variation from the nominal (without faults) value of one
element of the fault vector k = [k1, ..., k6], which components are: dry friction acting on
the mechanical transmission (k1), backlash of the transmission (k2), partial phase short
circuit (k3, k4, k5 for the three motor phases A, B and C), static eccentricity of the rotor
(k6). Each element of k is normalized with the value corresponding to a complete failure
of the electromechanical actuators.

The variable to monitor is a current signal i(k) defined as the envelope of the three
phase currents of the brushless motor. Two reasons motivate this choice: (1) the sensi-
tivity of this quantity to the variation of the fault vector is much greater than the other
available variables; (2) the motor currents are already measured for feedback and control
purposes, so the diagnostic function does not need additional hardware in terms of sensors
and transducers. For the analysis performed in this work, three models of the same EMA
are considered, each characterized by different levels of complexity and fidelity, namely a
HF dynamical model, a simplified LF dynamical model and a second LF model consisting
in a library based signal emulator. Each model reproduces the dynamical response of the
actuator in terms of motor current with different accuracy and at different computational
costs.

2.1 High Fidelity Model (HF)

The HF representation of the EMA simulates with great detail the physical phenomena
underlying the system behavior, at the expense of a rather long computational time. The
EMA is represented with a Simulink model: the different constitutive blocks simulate the
physics of the components of the EMA. The model accounts for different noise sources and
higher order effects, including: the analog to digital conversion of the controller signals,
the Pulse Width Modulation (PWM) hysteresis control of the three motor phase currents,
the effects of the electromagnetic couplings between the motor stator and rotor affecting
the generated torque and the counter electromotive force, and the mechanical nonlinear
effects of static and dynamic friction, backlash and end-of-travels.

This HF model is the representation of the system that we use as primary source of
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reference data, and its computational time ranges from tenths of seconds to a few minutes
when executed on a common laptop of medium performances for the simulation of a 0.5s
response. A detailed description of the HF model can be found in [12].

2.2 First Low Fidelity Model (LF1)

The first LF model (LF1) is a simplified dynamical model of the EMA, representing
the behavior of complex subsystems with simpler blocks. The main simplification in the
LF1 model is the elimination of the three phase electromechanical model of the brushless
motor, which accounts for most the complexity and computational resources required by
the HF model. The electromechanical model is then replaced by an equivalent single phase
DC motor model, which parameters are tuned to give the same overall performances (in
terms of torque, power and counter electromotive force coefficient) of the brushless motor
in the HF model. Another difference between the HF and LF1 models is the absence, in
the latter, of the PWM hysteresis control of the motor current, replaced by a sign block
and a proportional gain, which allows for a stable numerical integration with longer time
steps compared to what required for the HF model.

As a result, the integration time step can be increased by an order of magnitude without
incurring in numerical instability problems, and the evaluation time of each step is greatly
reduced; this way, the model is more efficient computationally, with improvements of more
than one order of magnitude with respect to the HF model. A more detailed description
of the LF1 model can be found in [12].

2.3 Second Low Fidelity Model (LF2)

The second Low Fidelity model (LF2) is implemented as a non-dynamical physics-
based simulation, in order to further reduce the computational time. This model acts
as a signal emulator: it computes the system output as the combination of a library of
pre-computed outputs from the HF model, as a function of the fault parameters vector,
rather than through the integration of a dynamical system. This operation is possible by
assuming that the effects of different faults are separable with a negligible loss of accuracy,
that is when the combined effect of multiple faults is much smaller than the effects of the
same faults considered alone.

The LF2 output is obtained by adding the perturbations produced by the fault param-
eters to the nominal condition current signal, computed offine with the HF model and
saved. Each perturbation is computed separately by adding a pre-stored signal weighted
with the corresponding fault parameter or with the nominal current value:

i(k) =
(
i0 + iSFf1(k1) + iBLK(k2)

)(
1 + iζ(k6) +

5∑
j=3

iPHA,B,C
f2(kj)

)
(1)

In equation (1) i0 is the current in nominal conditions, iSFf1(k1) is the disturbance pro-
duced by static friction, iBLK(k2) is the disturbance produced by backlash, iζ(k6) is the
modulation produced by rotor static eccentricity and iPHA, iPHB, iPHC are the modulations
produced by the partial short circuit of phases A, B and C respectively. The functions f1
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and f2 are polynomial regressions optimized to reproduce the behavior of the reference
system as accurately as possible.

The LF2 model greatly reduces the computational time of three orders of magnitude
compared to the HF; however, it is the least accurate (especially in presence of combina-
tions of more than one fault mode) and is generated by a trial and error procedure. Then,
the use of such approach is strongly problem-dependent and can be hardly generalized.

3 METHODOLOGY

Detecting the faults of a dynamical system is a parameter identification problem. The
response of the system in terms of one or more time dependent quantities is acquired
through a given set of sampling points and is compared with that obtained through a
computationally efficient LF model to estimate the damages affecting the system, which
cause the discrepancy between the two responses.

The measured quantity, specifically the envelope current i(k), is sensitive to the effects
of a number of fault modes. In the offline phase, the sampling points are determined to
capture most of the signal information with a compressed representation. Then, in the
online phase, the fault parameters are estimated by processing the compressed current
signal.

3.1 Signal compression strategy (offline)

The use of traditional techniques to perform the parameter estimation would require a
large amount of computational power and storage capability to convey a sufficient amount
of information from the system output through the following steps of the identification
algorithm. This is due to the complexity of physical phenomena underlying the system
and the high dimensionality of the problem. Then, an efficient signal compression is
needed to reduce the amount of data to store and process, enabling the evaluation of the
fault parameters with the available hardware resources.

The sampling technique exploits a two-step signal compression strategy that combines
reduced order modeling (Proper Orthogonal Decomposition) and unsupervised competi-
tive learning (Self-Organizing Maps) techniques to identify the most informative instants
of time to be stored online for a single signal. POD is frequently used to compress and
reconstruct high dimensional quantities [13, 14, 15, 16, 17]; in addition, a variety of com-
pressive sensing techniques can be adopted to reconstruct measured quantities and signals
[18, 19, 20, 21, 22]. In this work, the compression is not performed with the purpose of
reconstructing the original signal, but to reduce storage and computational effort needed
for the online execution of a fault detection algorithm. A first implementation of this
method is proposed by [7].

Proper Orthogonal Decomposition The first step of the compression strategy uses
Proper Orthogonal Decomposition (POD) [4, 23, 24, 25, 16] to identify a low dimensional
representation of the physics to monitor, that is, of the envelope current i as a function
of the fault condition k. We use the method of snapshots proposed by Sirovich [24] and
collect current signals (snapshots) computed with the HF model for ns different fault
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conditions and sampled with a constant frequency to obtain a vector of nt elements.
Then a nt × ns snapshot matrix is assembled and the POD modes computed through
singular value decomposition. POD modes {vj}ns

j=1 constitute an orthonormal basis that
is optimal in the least square sense; the basis vectors are ordered according to the fraction
of variance explained by each mode and expressed by the associated eigenvalue λj. A
generic current signal i(k) can be expressed as a linear combination of the POD basis
vectors vj:

i(k) ≈ i0 +
r∑
j=1

vjαj(k) (2)

where i0 is the reference signal in nominal condition and αj(k) are the coefficients of the
POD expansion. For the purposes of the optimal sampling strategy for signal compression
discussed in this paper, we are interested in the first r�ns POD modes that explain most
of the information content captured by the snapshot matrix. In particular, the next step
accounts only for the first dominant mode v1.

Self-Organizing Maps The second step of signal compression uses Self-Organizing
Maps (SOMs) [9, 26] to identify a set of highly informative sampling points that capture
the information content of the first POD mode v1. SOMs are single layer neural networks
that use unsupervised competitive learning to compute models and identify underlying
structures (e.g. clusters) of input data. The nω neurons of the SOM are represented in the
input space as weight vectors {ωj}nω

j=1 whose values are updated during network training.
Once training is completed, the weight vectors identify centroids of nω distinct clusters
of input data. In this work, SOM is trained with a data set T = [v1, t] constituted by
the first POD mode v1 and the time coordinate t. After training, the most informative
time-locations of the sampling points are encoded in the time component (second element)
of the nω � nt weight vectors ωj = [ωj1, ωj2]. Then, we can define a compressed EMA
output signal ı̂(k) as the envelope current sampled at times ω2 = {ωj2}nω

j=1.

3.2 Parameter identification (online)

In the online phase of the FDI procedure, parameter identification is achieved by min-
imizing the gap between measured compressed signal ı̂(k) and the signal estimate com-
puted with a lower fidelity model. Different strategies among those commonly used for
this class of problems are implemented and tested. The use of these methods for real time
identification would be unpractical if complete signals i(k) were considered, for the high
computational cost of processing high dimensional quantities.

Linearized parameter identification The first approach for parameter estimation is
a linear direct identification, not requiring the online execution of a system model. If the
variation of the system from the nominal condition is expected to be small, and if the
system behavior is regular, we can assume the output signal to vary linearly with the
components of the fault parameters vectors. Under those assumptions, the compressed
current signal can be represented as:
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∆i = A∆k (3)

where ∆i = ı̂ − ı̂0 is the variation of the compressed current signal from the nominal
condition and ∆k = k − k0 is the variation of the fault parameters from the nominal
condition. The matrix A is the system Jacobian evaluated in the reference condition k0,
whose j-th column contains the derivative of the reduced EMA output signal with respect
to the j-th fault parameter, computed with a finite differences method.

Matrix A is computed offline and stored; online, the linear system (3) is solved to find
∆k for measured ∆i: a least squares based estimate of the parameter vector k is computed
through QR factorization of matrix A in a single step. The signal compression allows to
sensitively reduce the size of matrix A, which leads to a reduction of the computational
effort to estimate k. This method can provide reliable estimate for small values of the
fault parameters (close to the nominal condition), where system behavior can be locally
approximated with a linear model.

Iterative parameter identification with LF1 In order to perform a parameter iden-
tification in presence of large variations from the nominal condition highlighting the non-
linear behavior of the system, one possible solution is to iteratively update the matrix
A, linearizing the system behavior near the current estimated value of k. In a few itera-
tions the solution is expected to converge near the actual system health status. At each
iteration j, the estimated kj and the Jacobian matrix A(kj) (in short Aj) are updated:

kj = kj−1 + C(A>j Aj)
−1A>j ∆ij (4)

where ∆ij = ı̂− ı̂j and C is a factor to improve numerical stability. In order to avoid the
inversion of the poorly conditioned A>A, a QR factorization is indeed employed to solve
the least squares problem, as per the linearized direct identification.

In contrast with the previous method, now the QR factorization is computed online: the
use of compressed signals ı̂ permits to contain the size of matrix A and the computational
burden associated with the solution of problem (4) at each iteration. However, the single
estimate of A requires the execution of a system model; the use of the HF representation
is computationally expensive and not viable for the online iterative computation. A
possible solution is the use of the LF1 model to estimate both the iteration matrix Aj
and the residual ∆i. With this approach, the system identification requires much more
time than the non-iterative approach (even of some orders of magnitude), but it would
be still compatible with a more traditional offline diagnostics.

Iterative parameter identification with LF2 An alternative version of the iterative
method can use the LF2 model of the system for the online estimate of the matrix A at
each iteration. The LF2 model provides a lower fidelity representation of system dynamics,
but is computationally much less expensive than LF1.
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4 RESULTS

The snapshot matrix assembles a reference dataset of ns = 5000 signals, each consisting
in the response to a chirp signal of small amplitude, computed with the HF model on
a set of fault vectors sampled with a latin hypercube strategy. Each snapshot consists
of a column vector of nt = 5001 components, since the simulation of a 0.5s signal is
sampled with a constant frequency of 10kHz. Then, we apply the two-step sampling
strategy presented in Section 3.1. First, we compute the POD basis vectors and keep
the first modal component v1 which alone explains approximately 75% of the information
content of the reference dataset (λ1/

∑ns

j=1 λj = 0.7575). Then, a nω = 30 neurons SOM
is trained over the set T = [v1, t] to identify 30 informative sampling points (Figure
1). The reduction from 5001 original signal points to 30 sample points allows to use
standard methods for the subsequent parameter estimation problem, which would imply
a prohibitive computational costs for online FDI whether applied to the full signal.
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Figure 1: Time-locations of the nω = 30 sampling points over the first POD mode v1

To assess the three parameter identification methods, two different test sets are com-
puted with the HF model. Each test set includes 100 signals, corresponding to 100 fault
conditions randomly sampled with a constant distribution limited to different ranges.
Specifically, the first test set considers only small values for the fault parameters, so both
the linearized and the iterative approaches are applicable; in the other test set, the varia-
tion from the nominal condition is larger, to assess the greater robustness of the iterative
methods. However, the main purpose of the proposed FDI strategy is the identification
of the early signs of system damages (which are better represented by the first test set)
before they start compromising the EMA performances.

Figure 2 compares the performances of the three considered parameter estimation
methods in combination with the optimal sampling, on the two test sets. Figure 2(left)
shows the relative error on the parameter estimation problem, computed as:

errk =
‖k‖√

6
(5)

Similarily, Figure 2(right) shows the error on the reconstructed signal ı̂ as obtained
with the low fidelity model used case by case (LF1 or LF2); the signal is reconstructed
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Figure 2: Relative errors in parameter identification (left) and output reconstruction (right) for different
methods.

by evaluating the model with the faults estimated by the parameter identification. The
error is computed as the L2 norm of the residual between the reconstructed signal and
the original signal iref , normalized as follows:

erri =
‖i− iref‖
‖iref‖

(6)

For all test cases the error on the signal reconstruction is coherent with the error on
the identified parameters. The linearized approach works correctly for the test sets with
limited faults, but it fails when the system is significantly far from the nominal condition.

Table 1: Computational times for the online parameter identification step

Test set small faults large faults
Method linear LF1 LF2 linear LF1 LF2

Computational time [s] 2.4e-4 1.8e1 1.6e0 1.9e-4 3.1e1 2.9e0

The iterative methods perform significantly better in the test sets characterized by
a greater variation from the nominal conditions. In particular, the iterative approach
exploiting the LF1 model shows the most consistent behavior in all the considered condi-
tions, at the expense of a longer computational time (the fault identification takes in the
order of tenths of seconds, Table 1). This method is then not suitable for hard real time
applications, such as a continuous online fault estimation in flight.

The other iterative method, using the computationally lighter LF2 model, has interme-
diate performances between the linearized method and the first iterative method for the
large damage condition, but takes significantly less computational time. Moreover, since
the LF2 library is generated using the HF model, this signal emulator is able to reproduce
the response of the HF model with higher accuracy than LF1 near the nominal condition,
when the combined effect of multiple faults are negligible. This results in a slightly better
accuracy of the second iterative method on the small faults test set, especially in terms
of reconstruction error.
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The computational cost of the QR factorization employed in the parameter estimation
methods (see Section 3.2) increases with the cube of the matrix dimensionality. Then,
the proposed signal compression strategy, lowering the amount of the data to process
online of two orders of magnitude, results in a reduction of six orders of magnitude in
the cost related to the QR factorization. This way, the considered methods for parameter
estimation are applicable to the case study, most of the computational effort of the online
phase being related to the execution of the models.

5 CONCLUSIONS

The paper discussed preliminary investigations conducted to assess the applicability
of a sampling method, based on Proper Orthogonal Decomposition and Self-Organizing
Maps, to the diagnostics of actuation system faults. The sampling technique is tested in
combination with different methods for the resolution of a parameter estimation problem;
the computational cost of the offline phase is mostly associated with the evaluation of
the low fidelity model for the iterative methods, while the cost of the QR factorization is
reduced of six orders of magnitude.

The results confirm that an in-flight fault detection is only viable with the linearized
method, which can run in fractions of milliseconds and is more suitable for real-time
executions of the algorithm. The method does not allow to identify the nature of fault
modes causing the actuator current signal to diverge greatly from the nominal condition.
However, the ability of detecting a small deviation from the nominal condition is enough to
completely characterize the health status of the system when dealing with slowly growing
faults, which are fairly common for electromechanical actuation systems. In addition, if
the health status of the system is slowly evolving, the matrix A(k) could be updated
with a low frequency (e.g. every few flight hours, according to the rate of change of the
estimated fault parameters) in order to perform the linearization near the last known fault
condition k. Conversely, since a hard real time fault detection is not always required in
the considered situations, the iterative methods can be used to analyze a small section
of time history of the system behavior (e.g half a second of system response every few
seconds to few minutes), to detect faults with a higher accuracy and robustness, possibly
to integrate the information provided by the linearized method.

Further developments will be dedicated to reduce the computing time needed for the
parameter estimation and increase the accuracy. Moreover, the task concerning RUL
estimation will be investigated, for example by mapping in real time the system useful life
directly from the reduced current signal to avoid a continuous fault identification. The
information retained in the reduced signal could indeed allow for better results in RUL
estimation than in fault identification, as observed for similar formulations adopted for
real time structural assessment problems [7].
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