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Abstract. The PGD formulation is extensively applied in different computational do-
mains. Its recent developments target fluid behaviour in Stokes and linear Ericksen flow
formulation using Penalty formulation or stable P1/P2 formulations to overcome the LBB
condition. In this work, we derive a stabilized PGD formulation for the non-linear Navier-
Stokes equation using Galerkin Least Squares including the convective term. The derived
formulation is used to solve benchmark problems like the lid-cavity using the PGD do-
main decomposition. The obtained solution is stable even using same linear interpolation
functions P1/P1 for the velocity and the pressure in all PGD subdomains.

1 INTRODUCTION

The demanding industrial applications constantly require faster numerical techniques,
despite the enhancement in computational power. Therefore, model order reduction tech-
niques (MOR) have been actively researched. The Proper Generalized Decomposition
(also known as PGD), is one of the active MOR research domains, since it is an a priori

model order reduction technique that requires no prior knowledge of the expected solu-
tion. Having produced very good results in various problems of physics and engineering
[3, 4, 5], either in complex or hexahedral domains [7, 8], the application of the PGD
in fluid mechanics remains mostly restricted to the use of the penalty approach on the
stokes equations, neglecting the convective terms, rather than coupling the velocities and
pressure by a mixed formulation [6]. Some studies have tried to upgrade the method by
employing it to the Navier-Stokes equations and the Rayleigh Bernard non linear flows,
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however several approximations were used [9, 10]. The objective of this work is to derive
a stabilized PGD mixed formulation for the Navier-Stokes equation, not using any mesh
conditioning, and thereby reducing the computational time significantly [2]
Numerical solution of the incompressible fluid flow is known to be complicated to achieve
due to the necessity of achieving the conservation of mass on one hand, and dealing with
the subgrid phenomena on the second hand. Adding to this the issue of model order
reduction techniques and separated representation, special care must be taken to achieve
convergence of the PGD. While the Ladyzhenskaya-Babuska-Breezi(LBB) condition (also
known as the inf − sup condition) has been tackled on an Eriksen flow using the (PGD)
[11] the Navier-Stokes equations are still not yet solved using the PGD in a mixed formu-
lation, using the same interpolation functions for velocity and pressure fields.
The present study hence tackles the aforementioned Navier-Stokes stabilization using
the Galerkin Least Squared (GLS) method to interpolate the velocities and pressures
[12], since the GLS success has well been validated in previous studies in various fields
[13, 14, 15, 16]. Subsequently, we will present the governing equations with the stabiliza-
tion technique, followed by a brief elaboration on the proper generalized decomposition,
and finally numerical results will be shown for a benchmark problem, the lid driven cavity
flow for instance.

2 NUMERICAL METHOD

2.1 Governing equations

In this work, for sake of simplicity and without any loss of generality, the flow field
is governed by the two-dimensional (2D) steady-state Navier Stokes equations. The con-
tinuity and momentum equations for an incompressible Newtonian fluid in their strong
forms are written as:

{

∇ · u = 0
ρ (u · ∇u) = −∇p +∇ · S

(1)

where u is the velocity vector field, p the pressure field and ρ the density. In the linear
momentum equation S is the viscous stress tensor written by:

S = µ
[

∇u+∇uT
]

(2)

where µ is the dynamic viscosity of the working fluid.

Let ∇S be the symmetrical component of the gradient tensor:

∇S =
1

2

(

∇+∇T
)

(3)

Hence the momentum equation could be re-written as follows:

ρ (u · ∇u) = −∇p+∇ ·
(

2µ∇Su
)

(4)

The weak form is subsequently derived as such:
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{ ∫

Ω
p∗∇ · udΩ = 0

∫

Ω
u∗ρ (u · ∇u) dΩ−

∫

Ω
p∇u∗dΩ+

∫

Ω

(

∇Su∗

)

:
(

2µ∇Su
)

dΩ = 0
(5)

where all superscripts ∗ refer to the test functions of the corresponding variable. Further
simplifications on the notation could be introduced by the use of the bilinear form notation
as follows:







a (u∗,u) =
∫

Ω
u∗ρ (u · ∇u) dΩ

b (p∗,u) = −
∫

Ω
p∗∇udΩ

c (u∗,u) =
∫

Ω

(

∇Su∗

)

:
(

2µ∇Su
)

dΩ
(6)

Hence, the conservation of mass and momentum could be re-written by:

{

b (p∗,u) = 0
a (u∗,u) + b (p,u∗) + c (u∗,u) = 0

(7)

Since the convergence of Equations (7) depends on the coercivity of the bilinear form c
and the satisfaction of the inf − sup condition of operator b, mesh based finite elements
method with linear interpolation functions on the pressure p and velocity field u fail to
depict the exact solution. Therefore, we adopt the Galerkin Least Squares (GLS) method
to stabilize the weak formulation using linear interpolation functions for both p and u.
The GLS write the stabilized problem as proposed by [17] using:



































b (p∗,u)−
nel
∑

e=1

τ3 (∇p∗,∇p)Ωe
−

nel
∑

e=1

τ4 (∇p∗, ρu∇u)Ωe
= 0

a (u∗,u) + b (p,u∗) + c (u∗,u) +
nel
∑

e=1

τ1 (ρu∇u∗, ρu∇u)Ωe

+
nel
∑

e=1

τ2 (ρu∇u∗,∇p)Ωe
= 0

(8)

The exact values of the parameters τi can only be determined empirically [18]. For
a thorough discussion on the Galerkin Least Squares stabilization in a finite element
framework, one can refer to [17, 18] and their references therein.

2.2 Linearizing the Navier-Stokes equation

To solve the weak formulation illustrated in equation (5), a linearization step of the
advective term is mandatory. Therefore, the simplest choice of a fixed point iterative
algorithm is used, considering the operator a defined in equation (6) as:

a (u∗,u) =

∫

Ω

u∗ρ (uc · ∇u) dΩ (9)

where uc is the known best estimation of u. In practice, uc is initialized as the solution
of the Stokes equation, a linear problem, using the same boundary conditions as the solved
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Navier-Stokes problem. Later on, an iterative fixed point algorithm is used to update uc

from the currently computed u, until the convergence of uc.

2.3 Proper generalized decomposition (PGD)

To reduce the computational time of solving the aforementioned governing equations,
stabilized using the Galerkin Least Square formulation, the model order reduction tech-
nique PGD is employed. Therefore the 2D domain Ω could be decomposed and solved
sequentially as 1D×1D problem. The solution of the GLS stabilized equations (8) writes
in a separated form (u, p) by:





u

p



 ≈













N
∑

i=1

Xu

i
(x) ◦Yu

i
(y)

N
∑

i=1

Xp
i (x) · Y

p
i (y)













(10)

where ◦ refers to the Hadamard product i.e. term by term multiplication of the Xu

i
(x)

and Yu

i
(y). The PGD algorithm is characterized by linear addition of the enrichment

modes. Consider the computed solutions of n− 1 modes, noted un−1, the nth enrichment
mode sought to find un could be calculated as such:





u

p





n

=













n−1
∑

i=1

Xu

i
(x) ◦Yu

i
(y) +R(x) ◦ S(y)

n−1
∑

i=1

Xp
i (x) · Y

p
i (y) + T (x) · U(y)













=





un−1 +R(x) ◦ S(y)

pn−1 + T (x) · U(y)



 (11)

Following this notation the gradient of the velocity vector field u = (ux, uy) is depicted
by:

∇un =





∂ux

∂x
∂ux

∂y

∂uy

∂x

∂uy

∂y





n

=

n−1
∑

i=1







∂X
ux
i

∂x
Xux

i

∂X
uy
i

∂x
X

uy

i






◦







Y ux

i

∂Y
ux
i

∂y

Y
uy

i

∂Y
uy
i

∂y






+





∂Rux

∂x
Rux

∂R
uy
i

∂x
Ruy



 ◦





Sux ∂Sux

∂y

Suy ∂Suy

∂y



 =

n−1
∑

i=1

X u

i ◦ Yu

i +R ◦ S

(12)

Whereas the pressure gradient is written by:
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∇pn =





∂p

∂x

∂p

∂y





n

≈
n−1
∑

i=1





∂X
p
i

∂x

Xp
i



 ·





Y p
i

∂Y
p
i

∂y



 +





∂T
∂x

T



 ·





U

∂U
∂y



 =

n−1
∑

i=1

X
p
i · Y

p
i + T · U

(13)

The most appropriate choice of the test functions u∗ and p∗ in the separated represen-
tation framework is:







u∗ = R∗ ◦ S+R ◦ S∗

p∗ = T ∗ · U + T · U∗

(14)

where R∗ and T ∗ are test functions that only depend on x, whereas the test functions
S∗ and U∗ are similarly exclusively depending on y. Having defined the gradients in
equations (12) and (13) and the test functions in equation (14), the weak form of the
governing equations (7) could be solved [19]. The resulting nonlinear equation comprising
four unknowns could be linearized by the use of a fixed-point iterative algorithm. First,
we consider S and U , the y components of each of the velocity vector and pressure field
as unknowns, and compute the R and T . Subsequently, the unknowns S and U could be
computed. Alternations of the computation ofR & T at a time, and S & U at another, are
carried until convergence of each enrichment mode. The algorithm is further elaborated
in subsections 2.3.1 and 2.3.2.

2.3.1 Computing R and T

As previously mentioned, we start with S and U as known variables. Since S and U
are known (set as random values initially), their corresponding test functions, namely S∗

and U∗ as set to zeros. Thus the test functions introduced in equation (14) become:

{

u∗ = R∗ ◦ S
p∗ = T ∗ · U

(15)

Computing the weak form of the governing equations (7) of the problem, leads to the
following bilinear form c:
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c (u∗,u) =
∫

Ω

(

∇Su∗

)

:
(

2µ∇Su
)

dΩ =
1
2
µ
∫

Ω
(∇u∗ : ∇u) +

(

∇u∗ : ∇uT
)

+
(

∇u∗T : ∇u
)

+
(

∇u∗ : ∇uT
)

dΩ =

1
2
µ
∫

Ω
(R∗ ◦ S) :

(

n−1
∑

i=1

X u

i ◦ Yu

i +R ◦ S

)

+

(R∗ ◦ S) :

(

n−1
∑

i=1

X u

i ◦ Yu

i +R ◦ S

)T

+

(R∗ ◦ S)T :

(

n−1
∑

i=1

X u

i ◦ Yu

i +R ◦ S

)

+

(R∗ ◦ S)T :

(

n−1
∑

i=1

X u

i ◦ Yu

i +R ◦ S

)T

dΩ

(16)

In a similar manner, we can replace the equations 15, 12 and 13 in the operators a
and b. The equation solved at the current iteration is reduced to a 1D equation on x
dimension only. This equation can be solved using any classical numerical technique, the
finite elements for instance with P1/P1 interpollation functions on both the velocity and
the pressure fields.

2.3.2 Computing S and U

Having computed R and T , we now use the obtained solutions to carry on with the
fixed-point algorithm. The choice of the test functions becomes:

{

u∗ = R ◦ S∗

p∗ = T · U∗
(17)

Replacing into the weak form of the problem leads to a one-dimensional partial differ-
ential equation, defined in the y dimension. Eventually the 1D problem is solved using
classical numerical techniques, the finite elements for instance.

2.3.3 Continue the iterative process

After obtaining the (S, U) values, we repeat the steps detailed in section 2.3.1 then
2.3.2 until the convergence of the unknowns (R,S, T, U). Once this convergence achieved,
we can add another product of functions until the convergence of the residual of the
differential equation of the problem.

3 Numerical example

The numerical method is applied to the benchmark problem of a lid-driven cavity flow.
As shown in Fig.1 no slip conditions are enforced on all the cavity walls. The fluid on the
top wall is moving horizontally at a velocity of u0 = 1m/s. The computational domain
is a square with a side length of 0.1m, the working fluid has a density ρ = 1kg/m3 and
µ = 0.01Pa.s, hence the flow Reynolds number in this example is Re = 10.

Writing the velocity field as u = (ux, uy) The results in Figs. 2, 3, 4 & 5 show
respectively the distribution of the horizontal component of the velocity field ux, the

6



Chady Ghnatios, Rawad Himo and Elie Hachem

Figure 1: Geometry of the simulated lid-driven cavity flow

vertical component of the velocity filed uy, the pressure field p and velocity vectors u at
a chosen set of nodes.

4 CONCLUSIONS

In this work, we demonstrate the possibility of using the PGD along with the Galerkin
Least Squares stabilization and a linearization fixed point iterative algorithm to find
the solution of the Navier-Stokes equation in a fluid benchmark problem for low Reynolds
numbers, using originally unstable P1/P1 formulations for the velocity and pressure fields.
This work should be extended further for high Reynolds numbers with extra stabilization
layers, using for example a multiscale method [20].

7



Chady Ghnatios, Rawad Himo and Elie Hachem

Figure 2: Horizontal velocity distribution in the simulated domain

Figure 3: Vertical velocity distribution in the simulated domain
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Figure 4: Pressure distribution in the simulated domain

Figure 5: Velocity vectors showing the flow behavior in the simulated lid-driven cavity
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