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Abstract. This study is focused on numerical as well as experimental investigation of free
surface flows during gravity casting processes. The numerical simulations are based on an
in-house implementation of the lattice Boltzmann method and results of the implemented
algorithm are validated against the measured experimental data. In order to capture the
free surface of an incompressible fluid, the algorithm based on the volume of fluid method
is adopted. In addition, a surface tension term is included. The suggested computational
algorithm is capable of capturing well an evolution of the free-surface flow during gravity
casting as shown by comparison of results of the performed numerical simulations and
experimental measurements.

1 INTRODUCTION

The free surface flow is a physical phenomenon involved in many manufacturing pro-
cesses, e.g. material transport, machining, casting etc. Casting in particular involves
flow of liquid or liquefied material into a rigid mold. Pouring the casting material into
the mold can be driven by external pressure or by body force (e.g. gravity, centrifugal
force). The latter aproach may be well employed in rapid prototyping, medical device
molding, replacement part manufacturing, production of electronic devices, toys etc. The
objective of the study is an analysis of free surface flow of the cast material inside a rigid
mold during gravity casting while thermodynamic processes (such as heat transfer and
solidification) are neglected.

Although there are earlier studies, mathematical and computational modelling of cast-
ing processes evolves rapidly since 1970s. A substantial development of computational
tools arose in 1980s and 1990s when advanced mathematical models of complex physical
properties were implemented. This includes finite difference and finite element solutions of
non-isothermal flow of non-newtonian fluid [1, 2] or simulations of solidification in metal
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casting [3]. Standard computational methods, such as finite element or finite volume
method, are based on macroscopic description of continuum. The main drawback of these
methods is the incompressibility constraint that requires solution of the Poisson equation.
This leads to high computational demands and cumbersome parallelisation which is crit-
ical for the ability of solving problems when the mold geometry dimensions are large in
comparison to the size of its most tiny topological structures.

The lattice Boltzmann method (LBM) models the macroscopic behaviour of the fluid
using mesoscopic kinetic equations based on physics of microscopic processes [4, 5, 6].
Thus the LBM does not require solution of Poisson equation for incompressible flows and
its implementation results in simple algorithm with low computational demands that is
suitable for massive parallelisation [7].

Experimental investigation of real casting processes is challenging as the casting pro-
cess often involves free surface flow of hot molten material inside a solid mold. In situ
measurements of casting flow patterns can be performed using e.g. X-ray radiography
and analysis of heat transfer between the liquid and the mold can be assessed using e.g.
thermocouple wires. In situ analysis of aluminium casting may be found e.g. in [8, 9]. In
order to provide an extensive data set measured under well controlled laboratory condi-
tions, a water analogue model is often applied, such as in [10, 11]. In such cases, the mold
can be made of transparent material such as polymethyl methacrylate (PMMA) which
allows for analysis of flow patterns by means of standard optical measurement methods.

Within this study, a dedicated experimental test setup which enables execution of
well-controlled benchmark tests is designed. These tests are then used for validation of
an in-house computational algorithm based on the lattice Boltzmann method (LBM).

2 LATTICE BOLTZMANN METHOD

The lattice Boltzmann method (LBM) started to be very popular during the last decade
[5, 6, 12]. The method is based on the mesoscopic fluid description unlike the classical
methods that utilise the macroscopic description. Because of this approach, the LBM
is simpler and less computationally demanding than the finite element and finite volume
methods. The lattice Boltzmann method originates from the lattice gas cellular automata
(LGCA), which represents a simplified molecular dynamics. Compared to the LGCA, the
LBM operates with virtual particles which make it possible to solve various complex flow
problems such as free surface flows and multiphase flows. To capture the free surface
of an incompressible fluid, the algorithm based on the volume of fluid method (VOF)
established by Thürey [13] is adopted in this study.

2.1 Discretisation

The LBM is based on the discretisation of the Boltzmann equation, which describes a
time evolution of distribution function f = f(x,u, t), x = [x1, x2, x3]

T , u = [u1, u2, u3]
T

in a phase space
∂f

∂t
+ u ·

∂f

∂x
= Ω(f) (1)
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Figure 1: D3Q19 velocity model

where Ω(f) is the collision operator and external forces are neglected. The knowledge of
the distribution function f permits the calculation of all macroscopic flow quantities.

First, the equation (1) have to be discretised in the velocity space while introducing
the finite set of the velocity direction vectors eα. This results in the discrete velocity
Boltzmann equation

∂fα
∂t

+ eα ·
∂fα
∂x

= Ω(fα) (2)

After discretisation in the velocity space, the equation (2) is discretised in the physical
space and time which yields a classical LBM scheme

fα(x+ eα∆t, t+∆t) = fα(x, t)−M−1S(τ)M (fα − f eq
α ) (3)

where the convective scaling ∆x = eα∆t is introduced and fα corresponds to the velocity
direction vector eα. In this study we consider the D3Q19 velocity model shown in Fig. 1,
which defines the velocity direction vectors eα and the corresponding weights wα.

The collision operator on the right hand side of equation (2) is approximated using
the multiple relaxation time (MRT) operator [14], where M is the transformation matrix
that projects fα and f eq

α into the discrete moment space m = [m0,m1,m2, ...,m18]
T . The

transformation matrix M is a linear mapping between the discrete velocity space and the
discrete moment space m, the diagonal matrix S contains the multiple relaxation times

S = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (4)

and the inverse matrix M−1 maps from the discrete moment space back to the discrete
velocity space. The values of coefficients are s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, s16 = 1.98.
The remaining coefficients are related to the single relaxation time s9 = s13 = 1/τ . The
equilibrium function f eq

α is defined as [5]

f eq
α (̺,u) = wα̺

(

1 + 3(eα · u) +
9

2
(eα · u)2 −

3

2
(u · u)

)

(5)
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Figure 2: Liquid-gas interface, unknown values of functions fα coming from the gas

Using Chapman-Enskog expansion can be shown, that the lattice Boltzmann method
with this equilibrium function corresponds to the incompressible Navier-Stokes equations.
The computation of the next time level t + ∆t using the LBM scheme (3) can be split
into the following two steps:

• collision step, where the local values of distribution functions are computed

f c
α(x, t) = fα(x, t)−M−1S(τ)M (fα(x, t)− f eq

α ) (6)

• propagation step, where the local values of distribution functions f c
α(x, t) are prop-

agated into neighbouring cells

fα(x+ eα∆t, t+∆t) = f c
α(x, t) (7)

Since this work is focused on gravity casting processes, the external body force f g
α is

incorporated into a collision step as follows

f c
α(x, t) = fα(x, t)−M−1S(τ)M (fα(x, t)− f eq

α ) + f g
α(x, t) (8)

where f g
α(x, t) = 3wα̺ (eα · g) and g is the gravity acceleration.

2.2 Free surface modelling

The principle of free surface modelling with the lattice Boltzmann method was in-
troduced in [13]. This approach is similar to the volume of fluid (VOF) method, with
exception that the free surface is tracked with the help of the distribution functions fα
(corresponding to mass transfer in the α direction). The free surface modification of
standard LBM algorithm distinguishes three types of cells, see Fig. 2:

• liquid (completely filled with liquid)

• gas (no liquid)

• interface (partly filled with liquid)
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Due to the slight compressibility of the liquid, the mass m and the fluid fraction
χ = m/̺ have to be defined. Value of χ is equal to 1 for liquid, 0 for gas and χ ∈ (0, 1)
for the liquid-gas interface. The algorithm for free surface flow consists of basic steps
described below. Firstly, the mass fluxes between the cells containing the liquid are
computed as

∆mα(x, t+∆t) = (fᾱ(x+ eα∆t, t)− fα(x, t))
χ(x+ eα∆t, t) + χ(x, t)

2

where ᾱ denotes the opposite direction to α. The total cell mass change can be expressed
as m(x, t+∆t) = m(x, t)+

∑

α ∆mα(x, t+∆t). After the mass change computation, the
collision and propagation steps of the lattice Boltzmann method are performed. Then the
microscopic variables are computed. Next the interface cell is changed into the liquid or
the gas cell if

m(x, t+∆t) ≥ ̺(x, t+∆t) −→ liquid cell,

m(x, t+∆t) ≤ 0 −→ gas cell.

Because the liquid and the gas cells cannot be next to each other, all liquid and gas cells
adjacent to the cell with the changed state have to be switched into an interface cell.
During the propagation step, the distribution functions fᾱ(x, t + ∆t) coming from the
gas cells to an interface cell are unknown and have to be reconstructed, see Fig. 2. The
reconstruction is performed using the equilibrium function, where ̺a corresponds to an
external pressure ̺a = 3(pa + 2κσ) and u is the interface velocity

fᾱ(x, t+∆t) = f eq
α (̺a,u) + f eq

ᾱ (̺a,u)− fα(x, t)

Term 2κσ corresponds to the surface tension, where κ = ∇ ·
∇χ

|∇χ|
is surface curvature and

σ is coefficient of surface tension. The algorithm is described in detail in [13].

2.3 Units conversion

Macroscopic flow quantities in lattice Boltzmann units are computed as

̺ =
∑

α

fα, ̺u =
∑

α

fαeα, p =
1

3
̺

The values of macroscopic flow variables are expressed in lattice Boltzmann units in LBM
simulations. In order to get physical values of flow variables, the conversion between lat-
tice Boltzmann units and physical units have to be established. When using the lattice
Boltzmann equation, the physical character of the fluid flow is described by only one pa-
rameter τ . Let H denote an arbitrary physical characteristic dimension of computational
geometry and n denote the number of lattices corresponding to characteristic dimension
H. Let ureal denote the expected maximal value of physical velocity. For stability reasons,
the maximal velocity in lattice Boltzmann units is set to uLB = 0.1. The last required
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parameter is physical value of kinematic viscosity ν. Using the listed values, the following
space and velocity ratios are defined as

CH =
H

n
, CU =

ureal

uLB

(9)

The ratios for other variables between physical and lattice Boltzmann units are derived
using CH and CU

CT =
CH

CU

, CP =
1

3
C2

U , Cν =
C2

H

CT

, CF =
CH

C2
T

, CST =
C3

H

C2
T

where CT is the time ratio, CP is the pressure ratio, Cν is the kinematic viscosity ratio,
CF is the force ratio and CST is the surface tension ratio. The kinematic viscosity in
lattice Boltzmann units νLB and the relaxation parameter τ can be expressed as

νLB =
ν

Cν

, τ =
1

2
+ 3νLB (10)

The physical value of computational time can be expressed as T = CT niter, where niter is
a number of the time iteration.

3 NUMERICAL AND EXPERIMENTAL MODELLING

The gravity casting flow was investigated both numerically and experimentally. The
performed experiments were designed so that they provided data for validation of the
implemented LBM algorithm. Two gravity casting flow scenarios were considered. Firstly,
a propagation of the cast material inside a long horizontal channel was studied, the setup
geometry is displayed in Fig. 3 (right). Secondly, a gravity flow inside a complex vertical
labyrinth, shown in Fig. 3 (left), was analysed. In both cases, the numerical results of
LBM simulations were confronted qualitatively as well as quantitatively with results of
the executed experimental measurements.

A special attention was paid to propagation of the fluid along the channel length and to
the free surface shape evolution. Heat transfer as well as solidification of the cast material
were not a subject of this study.

Each test case was performed for one of the selected Newtonian viscous fluids at stan-
dard room temperature. These fluids and their physical properties are listed in Table 1.
The viscosity, the surface tension and the density of the test fluids were precisely measured
both for fresh unused samples (i.e. before the casting experiments) and for samples of fluid
that were already cast inside the mold (i.e. after the execution of casting experiments).

3.1 Horizontal channel

The first test case aimed at a direct comparison of the numerical and experimental
data in terms of propagation of the cast material in a simple geometry, ideally in a long
horizontal channel with a single inlet at one end and a single outlet at the other end.
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Figure 3: Geometry of vertical (left) and horizontal (right) setup of the gravity casting test cases with
dimensions expressed in [mm]

Table 1: Parameters of the test liquids

Sugar solution Glycerol solution
density ̺ [kg/m3] 1244 1260

dynamic viscosity η [mPa · s] 41.6 640
surface tension σ [mN/m] 46 63

In order to fit the experimental setup within a square field of view, a spiral shape channel
was selected as depicted in Fig. 3 (right).

The test setup geometry consisted of two connected parts, a vertical reservoir and a
horizontal mold. The reservoir holded 90ml of liquid material (sugar solution in this case)
which was cast under gravity into the horizontal channel of rectangular cross-section. The
cross-section did not vary along the channel length and its dimensions were 3mm×10mm,
where 3mm was the height of the channel. In longitudinal direction, the horizontal channel
winded in a 1160mm long spiral.

The experimental stand was designed so that the propagation of the material in a mold
could be analysed using standard optical methods. Both the vertical reservoir as well as
the horizontal channel were milled in transparent PMMA sheets. The reservoir and the
channel were separated by a removable gate. The gate was designed so that it initially
obstructed the horizontal channel (thus it holded the test liquid inside the reservoir before
the start of the experiment), but it was free to slide in vertical direction. At the beginning
of each measurement, the gate was removed abrubtly (the gate removal time was less than
1/60 s) and the liquid flew freely into the rigid channel. The fluid flow was driven solely
by gravity.

Overall 10 runs of gravity casting experiments were executed. A qualitative compar-
ison of a randomly selected experimental run with results of LBM simulation is shown
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Figure 4: Top view of the horizontal channel: experimental data (top) vs. numerical results (bottom)
at time 5, 15, 25 and 35 s

in Fig. 4. Although a satisfactory agreement between experiments and numerical data
can be observed, the presented images indicate that the propagation of the wave front as
computed by LBM gets slightly delayed behind the experimental results. This observa-
tion is confirmed in Fig. 5 (right), which displays a position of the wave front along the
horizontal channel centerline (in terms of a distance from the gate) vs. time. The channel
centerline is indicated as a blue curve in Fig. 5 (left). It is obvious that the wave front
propagation as computed by the LBM algorithm corresponds well to the measured data
in the first phase of the casting process while it gets sloved down later on. Nevertheless,
the numerically predicted duration of the entire casting process (by means of LBM) is
about the same as the duration of the slowest experimental run.

The slight difference in time evolution of the wave front propagation between numer-
ical and experimental results may be attributed to several factors. Probably the major
factor is the gate removal. In the experiments, during the gate removal the gate slides
vertically while the horizontal channel opens gradually in non-zero time. This process is
not modelled in the numerical simulations, where the gate removal happens in zero time
and the horizontal channel is opened at once.

A second key factor is a limited accuracy of measurements of the test fluid physical
properties. Although the test fluid is considered to be Newtonian, its rheological measure-
ments show a decreasing tendency of the dynamic viscosity value with the decreasing shear
rate. This was not reflected in the numerical simulation, where a constant viscosity value
was employed. This constant was determined as an average of all the viscosity measure-
ments for all samples within a reasonable range of shear rates. Its value might be slightly
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Figure 5: Propagation of the wave front along the centerline of the horizontal channel

overestimated since an absolute measurement of the dynamic viscosity at extremely low
shear rates was not possible.

Some minor role on wave front propagation in the experiments may be also played by
precision of mold machining in terms of surface smoothness and precision of experimental
setup assembly. However these factors are considered negligible.

3.2 Vertical labyrinth

In the second test case, a free surface flow in a gravity casting mold of rather complex
vertically oriented geometry was analysed. It was a labyrinth of channels, as displayed in
Fig. 3 (left). In this case, the reservoir of cast material was positioned right above the
labyrinth of channels and was filled with 35.5ml of liquid material (glycerol solution). The
labyrinth channels had a square cross-section 10× 10mm except for the venting channel
in the central part which cross-section was rectangular 3mm×10mm, see Fig. 3 (left). At
the end of the labyrinth, the channel opened to a 30mm×30mm×10mm large chamber.
The reservoir and the labyrinth were separated by a horizontal gate. Using this setup,
the gate removal took less than 1/30 s. The setup geometry (i.e. the reservoir and the
labyrinth of channels) was milled in transparent PMMA sheets. In this case, series of
overall 30 experimental runs were executed. A brief summary of their results is provided
below.

After the gate removal, the cast material experienced a free fall before it hit the bottom
of the labyrinth and spread into its horizontal and vertical channels, see Fig. 6. The free
falling highly viscous liquid formed a neck which formation was strongly influenced by
the gate removal. The gate removal process was optimised so that the neck was centered
within the inlet vertical channel. The vertical labyrinth was designed so that the air did
not get entrapped in the labyrinth, except for the large bubbles in the inlet vertical channel
which formed after the initial neck of fluid hit the labyrinth bottom and consequently filled
the lower part of the vertical channel.

In general, the gravity flow in this vertical labyrinth resulted in a more complex free
surface flow then in the case of horizontal channel. This included not only an interaction
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Figure 6: Vertical labyrinth: experimental data (top) vs. numerical results (bottom) at time 0.20, 1.08,
2.18 and 2.88 s

between fluid and rigid walls but also an interaction of free surface interfaces which merged
together. Nevertheless, a qualitative comparison displayed in Fig. 6 reveals a reasonable
agreement between experimental measurements and numerical results of the implemented
LBM algorithm.

A quantitative comparison of experiments and simulations is displayed in Fig. 7 (right),
which provides a plot of wave front arrival times at 7 selected locations. These locations
are marked in Fig. 7 (left). The locations are numbered correspondingly to the propa-
gation of the test fluid in the labyrinth. From the plotted data, it is obvious that the
uncertainity level of the experimental results increases with the increasing number of lo-
cation. However, the mean values of the experimental arrival times are in reasonable
agreement with the LBM results.

Also for the vertical labyrinth, there are the same factors that influence the compar-
ison of experimental and numerical data as in the previous test case of the horizontal
channel flow. In addition, large variation in experimental data themselves is introduced
by the design of the vertical labyrinth and its gate release mechanism. The key source
of uncertainity in the experimental data is the gate removal and the subsequent vertical
flow of the test fluid. The gate slides in a horizontal direction and the shape of vertically
falling fluid’s free surface strongly depends on the duration of the gate removal. On the
contrary, the presented LBM simulation does not include a model for the moving gate.

4 CONCLUSIONS

The numerical results obtained using the in-house LBM code showed a reasonable
agreement with the assessed experimental data. The experimental measurements of the
gravity casting flow inside the long horizontal channel provided a set of data for validation
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Figure 7: Vertical labyrinth: comparison of wave arrival times at selected locations

of the implemented LBM algorithm. Despite the significant uncertainity of the experi-
mental measurements of the gravity casting in the vertical labyrinth, the LBM simulations
of this test case were capable of capturing the complex flow properties both qualitatively
and quantitatively, provided a large set of experimental measurements was carried out.
The simplicity of the LBM and its ability to simulate complex flow problems efficiently
makes this method suitable for simulation of real world casting problems.
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