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Abstract. In recent years, a growing interest has been shown for hybrid RANS-LES
approaches and their application to high-fidelity simulations of massively separated flows.
Such modelling approach is intended as a way to go beyond the known limitations of the
RANS in simulating massively separated flows and the computational cost of LES, which
is nowadays still too demanding for a practical use.

The aim of this work is to show recent advancements of the eXtra-Large Eddy Simu-
lation (X-LES) model [1] in the discontinuous Galerkin (DG) solver named MIGALE [2].
The main features of the X-LES formulation are: (i) a clearly defined subgrid-scale (SGS)
model based on the k-equation, (ii) a single turbulent kinetic energy equation switch-
ing dynamically between the RANS and LES formulations, (iii) the independence of the
model from the wall distance.

The LES formulation of the X-LES method has been validated and recalibrated using
the decay of homogeneous and isotropic turbulence (DHIT). The sensitivity of the en-
ergy spectrum to X-LES model constants and mesh size has been evaluated. The X-LES
prediction capabilities have been demonstrated in the computation of external aerody-
namic problems with massively separated flows, i.e. the flow around a circular cylinder
at Re = 105 and the shock wave/boundary layer interaction on a swept bump.

1 INTRODUCTION

In recent years an ever-increasing interest to go beyond the limited predictive capabil-
ity of the Reynolds-averaged Navier-Stokes (RANS) formulation has been shown. In the
range of moderate Reynolds numbers, availability of large HPC resources now allows to
employ Large Eddy Simulation (LES) also in complex flow applications. In this context,
the practice of an implicit LES (ILES) based on the Discontinuous Galerkin (DG) method
showed to be very promising due to the good dispersion and dissipation properties of the
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method. However, to date, characteristic Reynolds numbers of many industrial applica-
tions are too large for a fully resolved LES. For these applications the use of a hybrid
RANS-LES model or a wall modelled LES approach seems mandatory.

In hybrid RANS-LES models the RANS equations are active close to solid walls, where
LES would be prohibitively costly, while LES is used in regions of separated flow where
larger eddies can be resolved. Among the hybrid approaches available in the literature,
the eXtra-Large Eddy Simulation (X-LES) method [1, 3] has three attractive features: (i)
independence from the wall distance; (ii) use in LES mode of a clearly defined subgrid-
scale (SGS) model [5]; (iii) use of the k-ω turbulence model integrated to the wall.

Chapter 2 describes the implementation in MIGALE code of the X-LES method, while
in Chapter 3 the LES formulation of the hybrid method has been validated and recal-
ibrated using the decay of homogeneous and isotropic turbulence (DHIT), and the full
formulation prediction capabilities have been demonstrated in the computation of exter-
nal aerodynamic problems with massively separated flows: the flow around a circular
cylinder at Re = 105 and the shock wave/boundary layer interaction on a swept bump.

2 THE X-LES HYBRID RANS-LES MODEL

The complete set of equations of the X-LES model implementation proposed by Bassi
et al. in [3, 4] can be written as
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where ρ is the fluid density, E and H the stagnation or total energy and enthalpy per unit
mass, respectively, while the pressure p, the mean strain-rate tensor Sij, the turbulent
and total stress tensor, τ̂ij and τij, the heat flux vector q̂j and the limited values of eddy
viscosity µt are given by
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where k = max (0, k). Here γ is the ratio of gas specific heats, Pr and Prt are the molecu-
lar and turbulent Prandtl numbers. The production, destruction and cross diffusion terms
are
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In this implementation, being k limited to zero, X-LES actually switches between
three different flow models: Implicit-LES (ILES), LES with a well defined explicit SGS
model [5] and RANS closed by the k-ω model. The automatic switching among the models
is obtained through the definition of a “composite” specific dissipation rate

ω̂ = max

(
eω̃r ,

√
k̄

C1∆

)
, (13)

where ∆ is the SGS filter width and C1 a model coefficient. Although in the literature the
filter width parameter is often related to the local mesh spacing, here a constant value
has been used over the whole computational mesh. A constant value has been also used
by Kok [1] for some of the test cases.

The variable ω̃r in the source terms of Eqs. 4 and 5 and in the “composite” specific
dissipation rate definition in Eq. 13 indicates that ω̃ must fulfill a suitably defined “real-
izability” condition, which sets a lower bound on ω̃. This constraint ensures that X-LES,
regardless of being in RANS or LES mode, predicts positive normal turbulent stresses
and satisfies the Schwarz inequality for shear stresses

ρu′2i ≥ 0, i = 1, 2, 3,

ρu′iu
′
j

2 ≤ ρu′2i ρu
′2
j , i, j = 1, 2, 3, i 6= j,

(14)

where u′i indicates the fluctuating part of the i-th component of the velocity and the
overline symbol the temporal average operator.

Being in X-LES both the Reynolds and the subgrid stress tensor modelled according
to the Boussinesq hypothesis, an overall “realizability” condition can be enforced through
the definition of a suitably modified specific dissipation rate. In fact, after some algebra,
Eqs. 14 can be written in terms of modelled stresses as
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Let us denote with a the maximum value of the unknown eω̃/α∗ that fulfills the inequal-
ities 15 and 16. The lower bound ω̃r0 that guarantees realizable stresses is then given
by

eω̃r0

α∗
= a. (17)

Since in this work the underlaying turbulence model is the high-Reynolds version of k-ω,
α∗ is constant and the solution of Eq. 17 is trivial. The “realizability” constraint can be
finally enforced as

ω̃r = max (ω̃, ω̃r0) . (18)

3 NUMERICAL RESULTS

X-LES equations are here discretized in space according to the DG method, see [3]
for details. The accurate high-order time integration is here performed by means of the
multi-stage linearly implicit (Rosenbrock-type) Runge-Kutta schemes. In particular, the
three stages, order three (ROS3P) scheme of Lang and Verwer [6] has been used. An
extended review of several Rosenbrock schemes as well as their coefficients are reported
in [7]. The solver relies on PETSc, [9], for the linear solvers and to manage distributed
arrays and the communication among them.

3.1 DECAY OF ISOTROPIC TURBULENCE

The decay of homogeneous and isotropic turbulence (DHIT) has been investigated to
test the X-LES formulation as pure LES. The numerical results have been compared to
the experiment of Comte-Bellot and Corrsin [8]. In the experiment, the turbulence was
generated by a grid with mesh size M = 50.8 mm and for an inlet velocity u = 10 m/s.
The Reynolds number, based on these scales, is Re = uM/ν = 34000. The energy spectra
E (λ, t) were measured at three stations along the flow, at positions 42M , 98M and 171M
from the grid.

As suggested by Kok et al. [1], LES describes a filtered velocity field and a proper
comparison with the experimental data requires the filtering of the experimental data
with the same function. The second-order top-hat filter, which consists of averaging over
the filter width in physical space has been adopted and the one dimensional filter function

f (λ,∆) =
sin
(
1
2
λ∆
)

1
2
λ∆

, (19)

where λ =| λ | and ∆ = L/32 has been extended to the three dimensional case by
assuming isotropy.
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Figure 1: DIT. Isosurface of Q-criterion coloured with vorticity magnitude contours at t+ = 42 (left)
and t+ = 171 (right), P3 solution approximation and 323 mesh

In the simulations, a cubic box 2π × 2π × 2π has been used as domain with periodic
boundary conditions. The turbulent flow inside the domain moves along with the mean
velocity of the flow. The initial solution consists of a random velocity field generated
from the filtered experimental energy spectrum measured at the first station, i.e. at
time t+ = tu/M = 42, during the experiment. In fact, the experimental energy spectra
have been filtered according to this equation to determine an initial velocity field for the
computations, at t+ = 42, and to compare the numerical results at t+ = 98 and t+ = 171.
Figure 1 shows the isosurface of Q-criterion coloured with vorticity magnitude contours
at t+ = 42 (left) and t+ = 171 (right) for a P3 solution approximation.

The simulations have been carried out on 323 cubic elements with linear edges with
P3 solution approximation. The time-step has been set equal to ∆t+ = 1.5. The X-LES
formulation has been used in pure LES mode, with the initial value of k given by

k =
1

β∗
(C1∆)2 S. (20)

The sensitivity to the model coefficient C1 has been investigated, using three different
values: 0.05, 0.06 and 0.07. As shown in Fig. 2, the numerical energy spectra at t+ = 98
and t+ = 171 obtained for C1 = 0.06 are in good agreement with the filtered experimental
energy spectra.

3.2 FLOW PAST A CIRCULAR CYLINDER AT Re∞ = 105

The first testcase for the full formulation of X-LES is the unsteady flow around a
circular cylinder at a Reynolds number Re = 105, based on the cylinder diameter d.
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Figure 2: DIT. Filtered energy spectra at t+ = 98 (left) and t+ = 171 (right) for different model
coefficient C1, ∆ = L

32 , 323 mesh, P3 solution approximation

The boundary layer is laminar until the separation, where the turbulent transition occurs
immediately after the separation.

The flow is assumed to be periodic in the spanwise direction, with a period equal
to twice the cylinder diameter. The mesh has 29630 hybrid elements, hexaedra in the
boundary layer and prism outside, with quadratic edges. The 2D mesh (extruded in
the third direction) has been generated with a high-order version of a fully automated
in-house hybrid mesh generator based on the advancing-Delaunnay strategy [10]. The
far-field boundary is at 20 chords. The elements in circumferential direction are 60 and in
span-wise direction are 10, where the non-dimensional distance of the first mesh line from
the wall is equivalent to y+1 ∼ 1. The mesh shows a refinement in the wake area, where
X-LES should be in the LES formulation. The mesh density near (x/d, y/d) = (0.75, 0.5)
is 6× 10−2, two times coarser than the resolution used by Kok et al. in [1] and by Travin
et al. [11] (∼ 3× 10−2).

The filter width has been set to the value ∆ = 10−3. Fig. 3 shows the isosurfaces
of Q-criterion coloured with vorticity magnitude around the cylinder with X-LES and
URANS equations. Notice that flow-field computed by the hybrid method shows chaotic
three-dimensional turbulent structures, which are not present in the URANS solution.

Fig. 4 shows the pressure coefficient, CP , along the cylinder and the time history of the
lift, CL, and drag, CD coefficients on the average time interval (∼ 20 vortex shedding).
X-LES gives a substantial improvement over URANS results, which strongly underpredict
the pressure, and are in good agreement with the experimental data by Fage and Falkner
[12]. The computed mean value for CD = 1.12 is in agreement with the experimental
value reported by Fage and Falkner [12] (Cd = 1.06) and Achenbach [12] (Cd = 1.18).

The mean streamwise velocity along the centreline of the cylinder and the mean cross-
flow velocity profile at x/D = 1 are shown in Fig. 5 and compared with experimental
data of Tremblay [13] (corresponding to a Reynolds number Re = 1.4× 105).
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Figure 3: Cylinder. Isosurface of Q-criterion coloured with vorticity magnitude with k − ω (left) and
X-LES (right), P3 solution approximation
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Figure 4: Cylinder. Pressure coefficient Cp (left) and lift and drag coefficient (right), P3 solution
approximation
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Figure 5: Cylinder. The mean streamwise velocity along the centreline of the cylinder (left) and the
mean crossflow velocity profile at x/D = 1 (right), P3 solution approximation
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Figure 6: Transonic flow on a bump. p/pin on the channel floor at y = 0.15, y = 0.60 and y = 1.05, P2

solution approximation

3.3 TRANSONIC FLOW IN A CHANNEL WITH A BUMP

In this section some preliminary results describing the X-LES model prediction capa-
bilities in presence of shock waves are presented. In this problem the flow moves in a
channel made of a converging diverging section with three flat faces and a swept bump
on the lower wall [15]. The strong interactions between shocks and the boundary layers
lead to the formation of several flow separations that generate complex vortical structures
and secondary flows. The solutions have been computed for the following inlet conditions:
M = 0.75 and ReH = 1.13×106. Results have been compared with experimental data [14]
and a DG solution based on a “standard” RANS model. Computations have been per-
formed up to P2 polynomial approximation on a 72 960 hexahedral elements mesh with
quadratic edges. X-LES has been accurately integrated in time with the ROS3P scheme
and a fixed filter width value ∆ = 5e − 2. The pressure distribution on the floor at
different sections of the channel are shown and compared with RANS and experiments in
Fig. 6. Although significant differences between the RANS and X-LES Mach contours are
observed in Figure 7, both the models are able to reasonably predict the shocks positions.
In particular X-LES seems to predict slightly better the first shock location although some
spurious oscillation, probably due to the boundary condition imposition, are observed at
the channel outlet.
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Figure 7: Transonic flow on a bump. k − ω (left) and X-LES (right) at y = 0.1 and y = 0.9

4 CONCLUSIONS

This work shows recent developments and applications of eXtra-Large Eddy Simulation
(X-LES) model in the discontinuous Galerkin (DG) solver named MIGALE. The LES
formulation of the X-LES method has been validated and recalibrated using the decay of
homogeneous and isotropic turbulence (DHIT). The sensitivity of the energy spectrum
to X-LES model constants and mesh size has been evaluated. The X-LES prediction
capabilities have been demonstrated in the computation of external aerodynamic problems
with massively separated flows, i.e. the flow around a circular cylinder at Re = 105 and
the shock wave/boundary layer interaction on a swept bump.

The performance, in terms of accuracy and computational efficiency, have been com-
pared with RANS model and experimental data. In the framework of the adopted DG
method, X-LES method proved to be robust and able to correctly deal with separated
flows, improving the predicting capabilities over RANS model.

Work is in progress to extend the application of the hybrid method to other unsteady
test cases, possibly considering problems of industrial relevance, and to move towards
very-large scale parallel computations (ten of thousands cores).
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