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Abstract. In the last decades Computational Fluid Dynamics has become a widespread
practice in several industrial fields, e.g., aerodynamics, aeroacoustic. The growing need of
high-fidelity flow simulations for the accurate determination of problem-specific quantities
paved the way to higher-order methods such as the discontinuous Galerkin (DG) method.
In this context, the industrial interest is strongly promoting the development of more
and more efficient high-order CFD solvers. In this work we exploit some techniques, i.e.
p-adaptation, quadrature reduction and load balancing, to enhance the computational
efficiency of an existing DG code. The accuracy and efficiency of our approach will be
assessed by computing the implicit Large Eddy Simulation of the flow past a circular
cylinder at Reynolds number Re = 3900, and around a NACA0018 airfoil at Reynolds
number Re = 10000 and angle of attack α = 15◦.

1 INTRODUCTION

In the last decades Computational Fluid Dynamics (CFD) has become a widespread
practice in several industrial fields, e.g. aerodynamics, aeroacoustic, turbomachinery. The
growing need of high-fidelity flow simulations for the accurate determination of problem-
specific quantities paved the way to higher-order methods such as the Discontinuous
Galerkin (DG) methods. DG methods, if compared to standard industrial code, show
some deficiency in terms of computational efficiency. However, the industrial interest is
strongly promoting research efforts to devise more efficient high-order CFD solvers. The



A. Colombo, G. Manzinali, A. Ghidoni, G. Noventa, M. Franciolini, A. Crivellini and F. Bassi

aim of this paper is to describe an approach to enhance the computational efficiency of an
existing DG code [1], based on p-adaptation, quadrature reduction and load balancing.

A p-adaptation strategy that allows the variation of the polynomial degree of the
solution between the elements is adopted, obtaining a sensible reduction of the simulation
CPU time and memory, while not spoiling at all the high accuracy required by this class of
simulations. In particular, being interested in unsteady flows computations, such as Direct
Numerical Simulation (DNS) and Large Eddy Simulation (LES), we will investigate an
adaptation procedure suitable for time-dependent problems. Adaptation is here driven
by two simple indicators, based on interface pressure jumps and on the decay of the
coefficients of the modal expansion. These sensors are coupled to guarantee a reasonable
behaviour both for high- and low-degree polynomial approximations. Moreover, the degree
of exactness of quadrature rules is adapted on the computational domain to avoid over
integration of straight sided elements, and runtime load-balancing is applied, based on the
Metis library capability to generate “weighted” graphs, to handle the degrees of freedom
unbalance on each partition due to the adaptation algorithm.

The robustness and efficiency of the proposed approach is evaluated by computing the
ILES of the flow past a circular cylinder at Reynolds number Re = 3900, and around a
NACA0018 airfoil at Reynolds number Re = 10000 and angle of attack α = 15◦.

In Section 2 we briefly introduce the DG space and the time discretizations. Section 3
describes the definition of orthonormal hierarchical polynomial basis and the possible
approaches to their evaluation, while Section 4 the error estimators used to drive the
adaptaton. Sections 5 and 6 describe the techniques adopted to adapt the degree of
exactness of the quadrature rules and to balance the load of each processor. Finally, in
Section 7 a strategy for the p-adaptation is proposed and applied to different unsteady
compressible test cases.

2 THE NUMERICAL FRAMEWORK

The Navier-Stokes equations for the m variables in d dimensions can be written in
compact form as

P(w)
∂w

∂t
+∇ · Fc(w) +∇ · Fv(w,∇w) = 0, (1)

where w ∈ Rm is the unknown solution vector, Fc,Fv ∈ Rm ⊗ Rd are the convective and
viscous flux functions, and P (w) ∈ Rm ⊗ Rm is a transformation matrix. Employing
the conservative variables wc = [ρ, ρui, ρE]T for compressible flows P reduces to the
identity matrix (P = I). By multiplying Eq. (1) by an arbitrary smooth test function
v = {v1, . . . , vm}, and integrating by parts, we obtain the weak formulation∫

Ω

v ·
(
P (w)

∂w

∂t

)
dx−

∫
Ω

∇v : F (w,∇w) dx +

∫
∂Ω

v ⊗ n : F (w,∇w) dσ = 0, (2)

where F is the sum of the convective and viscous flux functions and n is the unit vector
normal to the boundary.

To discretize Eq. (2) we replace the solution w and the test function v with a finite
element approximation wh and a discrete test function vh, respectively, where wh and vh
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belong to the space Vh
def
= [Pk

d(Th)]m. Pk
d(T ) denotes the restriction to non overlapping

arbitrary shaped mesh elements T ∈ Th of the polynomial functions of d variables and
total degree ≤ k. For each of the m equations of system (2), and without loss of generality,
we choose the set of test and shape functions in any element T coincident with the set of
orthogonal and hierachical basis functions in that element. The DG discretization of the
viscous fluxes is based on the BR2 scheme, proposed in [2], while the convective numerical
flux is computed from the solution of local Riemann problems in the normal direction at
each quadrature point on elements faces.

By assembling together all the elemental contributions of the DG discretization, the
system of Ordinary Differential Equations (ODEs) governing the evolution in time of the
discrete solution can be written as

dW

dt
= R̃ (W) , (3)

with
R̃ (W) = M−1 (W)R (W) , (4)

where W is the global vector of unknown degrees of freedom, M is the global block
diagonal mass matrix, and R (W) is the vector of residuals. In this work we integrate in
time by using the linearly implicit (Rosenbrock-type) Runge-Kutta schemes [3].

3 EFFICIENT EVALUATION OF THE BASIS FUNCTIONS

In this section we briefly describe the approach proposed in [4] to build a set of or-

thonormal and hierarchical basis functions. Let Φ̂k
T =

{
φ̂T
i

}
i∈{1,...,NT

dof}
denote an initial

set of monomials defined in a reference frame relocated in the element barycentre and
aligned with the principal axes of inertia of T . To obtain a new set of orthonormal basis
functions, Φk

T =
{
φT
i

}
i∈{1,...,NT

dof}, we apply Algorithm 1 (modified Gram-Schmidt proce-

dure, MGS) for all T ∈ Th, where
(
φ̂T
i , φ

T
j

)
T

is the evaluation of the inner product, rTii

and rTij the coefficients of the MGS algorithm.

Algorithm 1 Modified Gram-Schmidt orthogonalization algorithm

1: for i = 1 to NT
dof do

2: for i = 1 to NT
dof do

3: rTij ←
(
φ̂T
i , φ

T
j

)
T

4: φ̂T
i ← φ̂T

i − rTijφT
j {remove the projection of φ̂T

i onto φT
j }

5: end for

6: rTii ←
√(

φ̂T
i , φ

T
j

)
T

7: φ̂T
i ← φ̂T

i /r
T
ii {normalize}

8: φT
i ← φ̂T

i

9: end for
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The basis functions can be evaluated following three different strategies, characterized
by different computational cost and memory:

• Full storing (PreShape). For each element and face the basis functions and, if
needed, their derivatives are evaluated at each Gauss point, during pre-processing
and stored in memory.

• Orthonormalization coefficients storing (PreCoef). The monomials evaluation, their
orthonormalization and the computation of the orthonormalization coefficients are
performed separately. The coefficients are evaluated and stored during pre-processing
for each element, according to the corresponding polynomial degree. Then, the
monomials are evaluated on-the-fly and orthonormalized, using the pre-computed
coefficients.

• On-the-fly evaluation (OTF). There is no storage related to the basis evaluation,
and both the monomials and the orthonormalization coefficients are re-computed
on-the-fly.

The test cases employed to compare the performance of the three proposed implementa-
tion was the transport of a vortex in uniform flow, both with Euler and Navier–Stokes
equations. In the latter case, the Reynolds number was Re = 100. In this section we
focus only on the efficiency of the solver rather than considering the temporal accuracy.
Three different meshes, respectively made of 252, 502, and 1002 quadrilateral elements
with linear edges, were considered.

Fig. 1 shows the performance comparison, in terms of CPU time and memory, regarding
the computation of the inviscid test case for the three strategies as a function of the total
number of degrees of freedom. The computational time is given in terms of Work Units
(WU) defined as WU = tsnc/τb, where ts is the measured CPU time of a simulation on
nc cores and τb is the reference TauBench time of the hardware1. According to this study,
the PreCoef strategy seems to be an a appealing compromise between CPU time and the
memory footprint, and, therefore, it will be used for the development of our p-adaptation
strategy. In particular we pre-compute the orthonormalization coefficients corresponding
to the maximum polynomial degree allowed by the user defined adaptation parameters,
here fixed at k = 6, and use them to orthonormalize monomials according to the local
(elemental) polynomial degree of the solution on-the-fly. Same trends have been obtained
for the viscous vortex.

4 A p-ADAPTATION STRATEGY

The adaptation is driven by error estimators that control the solution accuracy within
the domain, identifying the regions lacking/exceeding the requested resolution. In this
work these regions will be refined/coarsened by increasing/decreasing the degree of the
polynomial approximation of the solution. Among the several alternatives proposed in
literature for DG schemes, we rely on the combination of two indicators. The first one is

1-n 250000 -s 10 define the reference TauBench workload for the hardware benchmark
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Figure 1: Overall performance of the three different implementations as a function of the degree of
freedom for the isoentropic vortex

based on the magnitude of the solution jumps at grid cell interfaces [6], while the second
involves the decay rate of the modal coefficients [7]. It is worth pointing out that the
latter indicator is local to each element and does not require information of the solution
on the neighbouring elements.

The jump indicator is calculated for a solution component w (the pressure for this
work), and its value η is defined as the maximum jump at the element T interfaces:

ηJMP
T (w) = max

if
max

j

∣∣∣∣∣
(
w (xj, t)− w (xj, t)

+)
is(

w (xj, t) + w (xj, t)
+)

is

∣∣∣∣∣ , (5)

where w(xj, t) is the solution at the j-th surface quadrature points xj at time t on the
if -th interface. An alternative indicator is the Spectral Decay Indicator (SDI), which is
here based on the hierarchical modal set of basis functions Φk

T . Being the approximation
of the solution given by

wT (x) =

NT
dof∑

j=1

Wjφj(x), (6)

where the number of degrees of freedom NT
dof depends on the local (to the element)

polynomial degree kT . The truncated expansion for a lower polynomial degree can be
written as

w̄T (x) =

LT
dof∑

j=1

Wjφj(x), (7)

where LT
dof is the number of degrees of freedom related to the polynomial degree kT − 1.

Finally the estimator can be written as

ηSDI
T =

∫
T

(w − w̄)2dx∫
T
w2dx

, (8)

which relates the amplitudes of highest modes to the amplitude of the total modes.

5



A. Colombo, G. Manzinali, A. Ghidoni, G. Noventa, M. Franciolini, A. Crivellini and F. Bassi

Numerical experiments on the vortex test case show that the former indicator is reliable
for any polynomial degree, whereas the latter gives reasonable indications only for k ≥ 2,
assuming unit valure over the whole computation domain for lower degrees. Moreover
ηJMP is more diffusive, identifying a larger region for adaptation. According to these
observations, we implemented a combination of the two indicators

ηTOT
T = ηSDI

T INT

(
kT

max(2, kT )

)
+

1

max (1, kT )
ηJMP
T ∀T ∈ Th, (9)

where INT represent an integer division (ηSDI
T is set to 0 for kT = {0, 1}). Before the

coupling both indicators are normalized over the domain according to their maximum and
minimum values.

Being interested on unsteady flow problems, the error estimators used to drive the
adaptation of the order of accuracy are computed on the time-averaged solution. The
pseudo code of the adaptation procedure is reported in Algorithm 2, where k̂ is the
initial polynomial degree (fixed or variable over the computational domain), Ncyc the total
number of time steps required by the simulation, kmax the maximum allowable polynomial
degree defined by the user (kmax = 6), N the number of time-steps elapsing between two
adaptation cycles or between the simulation beginning and the first adaptation cycle, Gr
the percentage of the total number of elements that will be marked for refinement, Gc the
percentage of the total number of elements that will be marked for coarsening, nadp the
number of adaptation cycles to be performed, POST the position of the element sorted
in increasing order according to ηTOT

T .

Algorithm 2 Adaptation algorithm
1: L = 0
2: kT = k̂∀T ∈ Th
3: for icyc = 1 to Ncyc do
4: integrate the governing equation in time
5: evaluate runtime the time-average of the solution, W̄
6: if mod(icyc,N ) = 0 and L 6= nadp then
7: L ← L+ 1
8: compute and normalize ηJMP

T and ηSDI
T ∀T ∈ Th

9: compute and normalize ηTOT
T ∀T ∈ Th

10: for T ∈ Th do
11: if POST ≥ (1− Gr)card(Th) then
12: kT ← min(kT + 1, kmax)
13: else if POST ≤ (Gc)card(Th) then
14: kT ← max(kT − 1, 1)
15: end if
16: end for
17: L2 projection of the solution
18: end if
19: end for
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Orthonormal and herarchical modal bases simplify the L2 projection operators. In
practice, the DOFs of the restricted solution are equal to the low-order subset of their
high-order representations, while the DOFs of the prolongated solution are the same as
the low-order solution with null high-order components.

5 REDUCED QUADRATURES

The number of quadrature points rapidly increases when considering high order poly-
nomials and curved elements. However, as demonstrated in [4], not always the exact
quadrature is necessary to maintain the theoretical order of accuracy. To identify only
the regions of the mesh that require full quadrature points, we introduce the following
measure for the integration error on the element T :

εi,T = |m∗ii −mex
ii | ∀T ∈ Th, (10)

where m∗ii denotes the value of the i-th diagonal entry of the local mass matrix computed
with the reduced quadrature rule, whereas mex

ii is the expected value as a result of exact
integration. Then we use on the elements of Th an integration rule with the minimum
degree of exactness needed to satisfy the condition:

max
i∈{1,...,NT

dof}
εi,T ≤ tol, ∀T ∈ Th, (11)

where tol is a user-defined tolerance in the diagonal entries of the mass matrix.

6 LOAD BALANCING

When the p-adaptation algorithm is applied in parallel, an imbalance of the number of
DOF per partition is a side effect. To avoid a drastic reduction of the parallel efficiency,
a load-balancing procedure is considered. The approach is here based on repartitioning
via the Metis [8] library, exploiting the ability to generate weighted graphs. The weights
on the vertex (elements) have been set to take into account the variable polynomial order
over the mesh. Figure 2 shows the load of the processors without (left) and with (right)
the use of the load balancing approach, after six p-refinements, during the simulation of
the vortex test case (see Sec. 3).

7 NUMERICAL RESULTS

The robustness and efficiency of the proposed approach is evaluated by computing the
ILES of two problems of growing complexity. The first one involves the two-dimensional
flow past a circular cylinder at Reynolds number Re = 3900 (based on the diameter
D), while the second one deals with the turbulent flow around a NACA0018 airfoil at
Reynolds number Re = 10000 (based on the chord c) and angle of attack α = 15◦.
For both testcases, a two-dimensional mesh was generated with an in-house 2D high-
order mesh generation code [9]. For the NACA testcase, the 2D mesh was extruded in the
span-wise direction (8 elements along the span-wise-direction), assuming the flow periodic
with a period 0.2c.

7
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Figure 2: Load of the processors without (top) and with (bottom) the use of the load balancing approach
after six p-refinements, invicid isoentropic vortex

7.1 FLOW PAST A CIRCULAR CYLINDER

The ILES of the flow past a 2D circular cylinder is computed for a Reynolds number
Re = 3900 based on the cylinder diameter D and free-stream conditions. The hybrid
mesh consists of 4343 elements (quadrilateral and triangles) with quadratic edges, and
the farfield is set at 100D. Starting from a P1 uniform flow solution, different simulations
have been performed in order to investigate the influence of the p-adaptation parameters
on the numerical results, i.e. the number of adaptive cycles nadp = (5, 10, 20), the number
of time-steps between two adaptation cycles N = (200, 100, 50), and the percentage of the
total number of elements that will be marked for refinement Gr = (10%, 20%, 30%). The
solution was adapted only for the first 1000 iterations to obtain the polynomial distribu-
tion used to computed the unsteady solution. The results on the adapted mesh are then
compared with those obtained using a fixed polynomial order (P6). Figures 3 and 4 show
the effect of the adaptation algorithm parameters on the domain polynomial distribution.
Figure 5 compares the Cp and Cf distributions obtained with different pair (nadp,N )
(keeping fixed Gr = 30%) and with fixed high-order polynomial approximation(P6). Dis-
tribution are in good agreement only for the following pair: (nadp = 10,N = 100) and
(nadp = 20,N = 50).

7.2 FLOW AROUND A NACA0018

The ILES of the flow around a NACA0018 is computed for a Reynolds number Re =
10000 based on the airfoil chord c and free-stream conditions, with an angle of attack
α = 15◦. The hybrid 3D mesh consists of 17056 elements (prism and hexahedra) with

8



A. Colombo, G. Manzinali, A. Ghidoni, G. Noventa, M. Franciolini, A. Crivellini and F. Bassi

(a) nadp = 5 and N = 200 (b) nadp = 10 and N = 100 (c) nadp = 20 and N = 50

Figure 3: Polynomial approximation Pn distribution around the cylinder, nadp = 5 and N = 200 (left),
nadp = 10 and N = 100 (middle), nadp = 20 and N = 50 (right), Gr = 30%

(a) Gr = 10% (b) Gr = 20% (c) Gr = 30%

Figure 4: Polynomial approximation Pn distribution around the cylinder, nadp = 10 and N = 100
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Figure 5: Pressure (left) and skin friction (right) coefficient with different nadp and N (nadp = 5 and
N = 200, nadp = 10 and N = 100, nadp = 20 and N = 50), Gr = 30%
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Figure 6: Detail of the computational mesh, 17056 elements (prism and hexahedra) with quadratic
edges and Mach magnitude contour for the p-adapted (P1→4) 3D solution

quadratic edges, and farfield located at 100c. A detail of the computational mesh is
depicted in Fig. 6 (left). Preliminary results show in Fig. 6 (right) the Mach number
contours after three adaptation cycles. The adapted 3D solution contains elements ranging
from P1 to P4. 2D computations have been also performed to investigate the influence
of the adaptations parameters. Figure 7 shows the polynomial distribution (left) and
the Mach number contours (right) after ten adaptation cycles. The adapted 2D solution
contains elements ranging from P1 to P6.

8 CONCLUSIONS

In this work we implemented strategy to adapt the order of polynomial approximation
on the domain to increase the computational efficiency of a high-order DG solver, based on
a p-adaptation algorithm, quadrature reduction technique, and load balancing suitable for
unsteady compressible flows simulation in a high-order DG code. We investigated three
different approaches for the evaluation of the orthonormal and hierarchical set of basis
functions, showing that an appealing compromise between CPU time and the memory
footprint is achieved storing only the orthonormalization coefficients. The p-adaptation is
driven by a simple yet reliable algorithm to efficiently perform massively parallel compu-
tations of DNS, LES of turbulent flows. In the first test case, i.e. the ILES simulation of
the flow past a 2D circular cylinder, the comparison of Cp and Cf distributions obtained
with the proposed strategy or fixed solution polynomial approximation (P6) shows almost
overlying curves. Obviously the results of the former simulation rely on a lower number
of DOFs.

Future work will address the possible implementation of more advanced adaptation
strategies, error estimators, and the matrix-free approach.
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Figure 7: Polynomial distribution (left) and the Mach number contours (right) after ten adaption cycles
(2D)
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