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Abstract. Reduced-order models (ROMs) of nonlinear dynamical systems are essential
for broadening the scope of high-fidelity non linear CFD design optimizations or aeroelas-
tic investigations. The wide variety of fluid dynamics ROMs reported in literature shares
the aim of reducing the dimensionality of dynamical systems by performing a projection
of the governing equations onto a basis that may be often constructed via the Proper
Orthogonal Decomposition (POD). Unfortunately, the relevance of POD is still an open
question for aeroelastic applications because it is impossible to define a spatial correlation
for a domain that is moving and deforming during the simulation. Moreover, when ad-
dressing real-life applications, the non-linear compressible Navier-Stokes equations have
to be considered, resulting in an additional difficulty.

In the present work, we propose a ROM based on the classical Galerkin projection onto
a basis contructed via index-based POD. The discrete empirical interpolation method
(DEIM) is adopted in order to efficiently deal with the compressible Navier-Stokes equa-
tions non-linearities. Numerical tests have been carried out to evaluate the performance
of the present ROM. First, we validate the classical POD-DEIM technique for a time-
dependent and slightly compressible flow around a NACA 0012 airfoil at high incidence.
Then, the POD-DEIM ROM is used to reproduce the solution of a high-fidelity model
based on the Arbitrary Lagrangian-Eulerian (ALE) formulation combined with a deform-
ing grid for a flow around an oscillating supercritical airfoil. On the basis of the achieved
results, we highlight the limits and the strengths of the proposed technique.
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1 INTRODUCTION

Dynamical systems are the basic framework for modeling and control of a large variety
of complex systems of scientific interest or industrial value. The aeronautic and aerospace
fields are important examples in which some complex physical phenomena, such as fluid-
structure interaction, shock interaction, flow separation, limit-cycle oscillations and so on,
can be investigated with the aforementioned dynamical systems. Interactions between
fluid and moving (deforming) structures are among the most important issues of aircraft
design and numerical simulation has been one of the few available means for studying this
kind of problems. However, the growing need for an improved accuracy attainable with
a high fidelity (or full order) model leads inevitably to an unaffordable computational
cost whose reduction represents one of the main motivation of this work. The projection-
based reduced order models (ROMs) are physics based methods that can potentially yield
very high speedups. These approaches involve the resolution of the dynamic equations
of the system by projecting them on a suitably chosen low-dimensional sub-space. The
effective dimension reducibility for these methods is usually limited to problems with lin-
ear or multi-linear terms. In fact, when a general non-linearity is present, the cost to
evaluate the projected non-linear function still depends on the dimension of the original
system, resulting in ROM simulation time of the same order as the original system time
computation. Therefore, several techniques have been introduced to address this issue
by approximating the non-linear term of the system equations. The Discrete Empirical
Interpolation Method (DEIM), introduced by Chaturantabut et al. [1] provides an inter-
polation of the non-linear quantities in a reduced domain including only a small number
of elements. An efficient implementation of the DEIM for non-linear compressible flows
ROMs is reported in [2].

Considering aeroelastic dynamical systems solved on a moving/deforming mesh, Ant-
tonen et al. [3] outlined that an additional level of difficulty arises since the POD involves
spatial correlations that require special care in a continuous deformable framework. The
loss of the spatial correlation and the increasingly important problems of stability and
accuracy make the aeroelastic ROMs study widely challenging. In a discrete framework,
Freno et al. [4] provide an accurate ROM requiring that the projection basis is defined
taking into account the mesh deformation. They use dynamic basis functions to take into
account the domain deformation dynamics by defining a dynamics for the projection basis
related to the instantaneous deformed configuration. In the particular case of a rigid body
motion, an interesting manner to avoid this issue is proposed by Lewin and Haj-Hariri
[5] and Placzek et al. [6]. They perform the projection of the governing equations in a
non-inertial reference frame in order to preserve the consistency of the POD formulation.
Anyway, stability problems appear when considering non-linear flows. Bourguet et al. [7]
propose a Hadamard formulation to take into account small wall deformations. Then,
an a posteriori calibration is proposed to improve the stability of the model. Liberge
and Hamdouni [8] implement a multiphase formulation that allows to define the POD on
a deforming domain using characteristic functions to follow the fluid-structure interface.
Stankiewicz et al. [9, 10] deepen the study of Anttonen et al. [3] with test cases of in-
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creasing complexity also considering parametric changes. Although the aforementioned
aeroelastic studies do not consider systems with a general non-linearity, Freno et al. [4, 11]
tackle this problem, but the non-linear term is evaluated at each time step by the full
order model (FOM) on the whole domain. This limitation may be prevented by the use
of the DEIM to improve the ROM efficiency.

In the present work, we propose a ROM based on the classical Galerkin projection
onto a basis constructed via the index-based POD formulation. The discrete empirical
interpolation method (DEIM) is adopted in order to efficiently deal with the compressible
Navier-Stokes non-linearities.

2 THEORETICAL FRAMEWORK

The FOM considered in the present paper for an aeroelastic CFD problem is governed
by the Arbitrary Lagrangian-Eulerian (ALE) formulation of the non-linear Navier-Stokes
equations. In the semi-discrete form the ALE formulation for the basic cell of the com-
putational domain reads:

d

dt

∫
Ω(t)

W dΩ = −
6∑

i=1

∫
∑

i(t)

Fc(W , s)·ndΣ−
6∑

i=1

∫
∑

i(t)

Fd(W )·ndΣ = −RΩ(W , t) (1)

where W is the vector of the conservatives variables ρ, ρU and ρE. Fc and Fd are,
respectively, the convective and diffusive fluxes and Σi represents the i face of the hexa-
hedral cell considered in the structured mesh. The arbitrary motion of the computational
mesh is taken into account by the definition of c = U−s as the convective velocity, where
s is the mesh velocity with respect the spatial domain. The flow equations are solved
by a finite-volume method with ONERA’s in-house software elsA [12]. Once spatially
discretized, we can write:

dW

dt
= −RΩ(W , t)

V(Ω(t))
= R̃Ω(W , t) (2)

where V(Ω(t)) is the volume of the related cell and R̃Ω is a non-linear residual operator
that, on the basis of the concerning instantaneous aerodynamic field, computes the flux
balance for each cell and divides it for the related cell volume.

2.1 Proper Orthogonal Decomposition

Empirical modes resulting from Proper Orthogonal Decomposition [13, 14] are the most
widely used for fluid dynamics reduced-order modeling. This method consists in looking
for the deterministic function that is most similar in an average sense to an ensemble
of representative systems solutions (snapshots). Sirovich [13] introduced the so-called
“method of snapshots” for computing a POD basis. Assuming that the snapshots are
collected in a matrix [U] ∈ RNx×Nt with Nx the number of degrees of freedom and Nt the
number of collected snapshots, the POD is equivalent to a singular value decomposition
(SVD) of the matrix [U], so that:

[U] = [Φ][Σ][V]T (3)
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where the matrix [Φ] ∈ RNx×Nr is an orthonormal matrix that contains the POD mode
vectors, with Nr = rank(U) ≤ min(Nx, Nt). The diagonal matrix [Σ] ∈ RNr×Nr contains
the singular values of [U] listed in order of decreasing magnitude. If we define the diagonal
element of [Σ] as σi the rate of “energy” captured by the first Nm modes is given by
ENm =

∑Nm

i=1 σ
2
i /
∑Nr

i=1 σ
2
i . This quantity is an indicator of the energy neglected by

retaining only the first Nm POD modes.
The POD is based on the assumption that there is a correlation between successive

snapshots of the flow. As a consequence, if a non-deforming mesh is considered, the
snapshots collected in [U] are easily spatially correlated as each finite volume preserves the
spatial position during the simulation. On the contrary, the spatial domain correlation is
lost when a deforming domain is considered as each finite volume is moving and deforming
during the numerical simulation. In this case, Antonnen et al. [3] propose an index-based
POD for which the snapshots in [U] are collected retaining the index numbering order
so that a fixed computational index-based domain is taken into account to preserve the
consistency of the POD process. This approach allows to directly deal with discrete
projection and discrete inner product for the construction of the ROM, in contrast with
the continuous formulation that requires the use of characteristic functions to follow the
moving fluid-structure interface [8].

2.2 Reduced Order Model

The basis of the ROM consists in approximating the conservative field by a base solution
W0 (steady or time-average flow) and a linear combination of the POD modes Φi:

W (t) ≈W0 +
Nm∑
i=1

ai(t)Φi (4)

In this work, the Galerkin projection [9, 15] is used to develop the ROM, which means
that the system is projected orthogonally onto the space spanned by the modes used
to approximate the solution. Substituting eq.(4) in eq.(2) and projecting (taking into
account the orthogonality of the POD basis) the following ROM is obtained:

da

dt
= ΦT R̃Ω(W0 +

Nm∑
i=1

ai(t)Φi, t) (5)

This is a system of Nm ODEs, with Nm � Nx, where the unknowns are the time ampli-
tudes associated to the POD modes of the ROM.

It should be noted that, for the compressible Navier-Stokes equations, the operator R̃Ω

is non-linear and cannot be expressed as the product of constant terms and amplitudes
unless specific approximations or formulations are introduced to obtain a multilinear form
[16, 17]. To tackle this issue a hyper reduction technique introduced by Chaturantabut
et al. [1], called Discrete Empirical Interpolation Method (DEIM), is used. The DEIM
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involves the approximation of the non-linearity as:

R̃Ω(W , t) ≈
Nl∑
j=1

cj(t)Ψj (6)

where, analogously to eq.(3), a POD of the non-linear term snapshots is adopted to
obtain the basis Ψ of size Nx × Nl, where Nl is the number of retained modes after
cutting the POD basis of the non-linear term. The coefficients cj(t) represent the DEIM
amplitudes. The system of eq.(6) is still overdetermined because it involves Nx equations
in Nl unknowns. The DEIM provides a greedy algorithm to select the Nl equations of
eq.(6) so to obtain a determined system. More specifically, if e℘i

is the ℘i-th column
of the identity operator of size Nx × Nx, the DEIM algorithm computes the operator
P = [e℘1 , . . . , e℘l

] ∈ RNx×Nl so that the subsystem

PT R̃Ω(W , t) ≈
Nm∑
j=1

cj(t)(P
TΨ)j (7)

of size Nl ×Nl can be inverted. So the DEIM approximation of the RHS of eq.(5) reads:

R̃Ω(W , t) ≈
Nm∑
j=1

(
(P TΨ)−1PT R̃Ω(W , t)

)
j︸ ︷︷ ︸

cj(t)

Ψj (8)

Projecting eq.(8) and substituting in eq.(5) yields to the POD-DEIM ROM:

da

dt
= ΦT

Nm∑
j=1

(
(P TΨ)−1PT R̃Ω(W0 +

Nm∑
i=1

aiΦi, t)

)
j

Ψj (9)

The term PT R̃Ω(W0+
∑Nm

i=1 aiΦi, t) changes during the time integration as it depends on t.

Moreover, if the time integration corresponds to the sampled time period, the term R̃Ω is
a priori known for the sampled time instants and can be interpolated for the intermediates
ones by using the collection of the non-linear term snapshots. In the present work, this
particular case is investigated although it is quite restrictive. In fact, when we want to
integrate the ROM for a longer time period or for a different flow parameter the operator
R̃Ω(W , t) must be correctly evaluated. Since this operator evaluates componentwise the
conservative variable vector W , we can observe that:

PT R̃Ω(W0 +
Nm∑
i=1

aiΦi, t) = R̃
∗
Ω

(
PTW0 +

Nm∑
i=1

ai(P
TΦ)i, t

)
(10)

The new operator R̃
∗
Ω evaluates exactly the RHS of eq.(2) only for the Nl indexes (cells)

selected by the DEIM algorithm.
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The results of the present paper are related to the formulation of eq.(9), but the DEIM
amplitudes c(t) are computed directly by projecting the non-linear snapshots on the non-
linear POD modes, thus they are a priori known at the time instants where the snapshots
have been sampled. For this reason, the ROM system of ODE in eq.(9) is easily integrated.
Furthermore, when the POD-DEIM ROM is used to reproduce a longer time period or
the solution for a different flow parameter, there are problems concerning two aspects.
The first one is related to the definition of suitable POD basis [18, 19]. The second one is

related to the construction of the operator R̃
∗
Ω. In fact, it evaluates the instantaneous non-

linearity of the FOM for the indexes selected by the DEIM algorithm. This operation
is not straightforward when a deforming grid is considered since the position and the
deformation of each cell selected by the DEIM (as well as for its related neighbors in
order to complete the stencil) must be updated at each time step in order to take into
account the metric changes in the computation.

3 Results

The ROM resulting from the aforementioned formulation is used to model the flow
for two different configurations. First, the POD-DEIM technique is validated for a time
dependent and slightly compressible flow around a NACA 0012 airfoil at high incidence.
Then, the index-based POD-DEIM ROM is used to reproduce the flow induced by a
forced oscillation prescribed to a NLR7301 supercritical airfoil.

Figure 1: Proper orthogonal eigenvalue spec-
trum.

Figure 2: Density fields of the first four proper
orthogonal modes (POMs).

3.1 High incidence flow around a NACA 0012 airfoil

For the first test-case, a fixed NACA 0012 airfoil is set at an incidence of α = 20◦

with the flow parameters M = 0.2 and Re = 1000. A structured C-grid is used with
about 30 × 103 finite volumes. The farfield distance is set to 10 chord lengths. The
flow can be considered as slightly compressible and laminar. With a preliminary steady
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FOM ROM

Figure 3: Comparison of the first six modal coordinates ai(t) computed as the solution of the ROM
equations and the FOM coordinates defined by the projection of the snapshots on the POD modes.

configuration as initial condition, an unsteady simulation is performed with the Backward
Euler scheme and the Dual Time Step acceleration technique [20]. The maximal number
of sub-iterations is set to 50. After a transitory time period a periodic vortex shedding
phenomenon is observed. We employ a sampling of 300 snapshots on 3 vortex-shedding
cycles to construct the POD basis for the flow solution and for the non-linear residual
term. The energy distribution of the solution POD modes is plotted in Fig.1. The value
of ENm =

∑Nm

i=1 σ
2
i /
∑Nr

i=1 σ
2
i for Nm = 10 is already over 0.9999. The first four density

POD modes are depicted in Fig.2.
The ROM is then constructed for a basis with Nm = 10 POD modes and Nl = 40

non-linear POD modes. The time integration of the ROM provides the time histories of
the modal coordinates ai(t) on the sampled time interval. The comparison of the modal
coordinates resulting from the time integration of the ROM and from the projection of the
snapshots on the POD modes is shown on the plots in Fig.3 for the first six amplitudes.
Good agreement can be found between the time-domain ROM and the full-order reference.
The achieved result validates the formulation of the POD-DEIM ROM for the case of a
non-deforming spatial domain.
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3.2 Turbulent flow around a NLR-7301 supercritical airfoil in forced motion

The ROM aeroelastic capabilities are investigated on a NLR-7301 supercritical airfoil
in forced motion. The free-stream conditions are ρ∞ = 0.383 kg/m3 and T∞ = 277 K
with a mean angle of attack α0 = 0.5◦.
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Figure 4: Displacement of the airfoil fluid-
structure interface during one cycle of vibra-
tion. The initial position of the undeformed
airfoil is the black thick line and the airfoil con-
tours are the colored from the black to the blue
as the time increases during the cycle of vibra-
tion.

Figure 5: Density fields of the first four proper
orthogonal modes (POMs) for the flow around a
NLR-7301 supercritical airfoil in forced motion.

M = 0.75, b*=0.10
M = 0.50, b*=0.75
M = 0.50, b*=0.10

Figure 6: Proper eigenvalue spectrum of the three test cases for the NLR-7301 airfoil in forced motion.

Fig.4 illustrates the airfoil’s fluid-structure interface motion prescribed using a single
structural mode combining pitch and heave with a frequency f = 10 Hz, multiplied
by a generalized coordinate q defined by the harmonic law q(t) = b∗ cos(2πft). Three
different numerical simulations are performed for different pair of parameters (M∞, b

∗) ∈
[(0.50, 0.10); (0.50, 0.75); (0.75, 0.10)]. The corresponding Reynolds numbers based on the
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chord length c = 0.3 fall in the interval Re ∈ [1.1 × 106; 1.7 × 106]. A structured C-
grid is used with about 20 × 103 finite volumes. The Reynolds-averaged Navier-Stokes
equations (RANS) are solved with the k − ω turbulence model of Kok [21]. The farfield
distance is set to 10 chord lengths. The time integration for unsteady computations
with a prescribed harmonic motion is performed with the backward Euler scheme and
the Dual Time Step acceleration technique. The maximal number of sub-iterations is
set to 50. The time step δt = T/nT is set such that the vibration period T = 1/f is
split into nT = 128 samples. Unsteady simulations are performed to cover nper = 20
periods of vibration to reach a stable periodic state and the resulting number of temporal
iterations is Nit = npernT . The snapshots for the computation of the POD modes are
regularly sampled on the last three periods of vibration, resulting in 384 snapshots. The
eigenvalues associated to the POD modes are plotted in the spectrum in Fig.6. In this
case, a significant gap is observed in the spectrum for the eigenvalue λi = 127 since the
flow field is periodic and the snapshots sampled in the last two periods are redundant with
those computed on the first period of vibration. The number of independent snapshots
is therefore 128 minus one since the centering process of the snapshots before the POD
decreases by one the rank. The value of E10 is already over 0.9999. The first four density
POD modes are depicted in Fig.5. In contrast with the previous example, in this case the
local value of each POD mode has not a related spatial location as the mesh is deforming
during the sampling process. For this reason Fig.5 is only illustrative because the index-
based POD provides index (not spatial) POD modes. In this paper, ROM integration
results for the case (M∞, b

∗) = (0.75, 0.10) are shown. Similar results have been obtained
for the other two investigated cases, for which the smaller Mach number do not lead to
any shock formation on the airfoil surface. The ROM is constructed for a basis with
Nm = 10 POD modes and Nl = 40 non-linear POD modes. The time integration of
the ROM provides the time histories of the modal coordinates ai(t) on the sampled time
interval. The comparison of the modal coordinates resulting from the time integration of
the ROM and from the projection of the snapshots on the POD modes is shown on the
plots in Fig.7 for the first six amplitudes. Then, the instantaneous conservative fields are
reconstructed so that the non-dimensional aerodynamic force coefficients are integrated.
The comparison of the aerodynamic force coefficients of the FOM and the ROM is shown
in Fig.8. Good agreement can be found between the time-domain ROM and the full-order
model of reference.

4 Conclusion

This paper presented the implementation of a POD-DEIM ROM that uses an index-
based computational domain in order to deal with deforming grid in aerodynamic systems.
This method was motivated by the desire to build a reduced order model for non-linear
flows with deforming meshes. The POD basis was used to approximate the solution and
to project the FOM equations, while the non-linearities associated to the Navier-Stokes
equations were efficiently dealt with by the DEIM. Firstly, the method was validated for
a slightly compressible flow around a NACA 0012 airfoil at high incidence for a non-
deforming mesh. Then, this method was applied and validated for the flow induced by
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FOM ROM

Figure 7: Comparison of the first six modal coordinates ai(t) computed as the solution of the ROM
equations and the FOM coordinates defined by the projection of the snapshots on the POD modes.
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Figure 8: Comparison of the non-dimensional aerodynamic force coefficients related to the the ROM
and the FOM conservative fields.
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a forced oscillation of a NLR-7301 supercritical airfoil at high Re number. The index-
based POD-DEIM ROM properly reproduces the aerodynamic fields in both cases. A
clarification was provided about the preliminar implementation of the operator for the
non-linear term since in the present paper this issue was avoided by integrating the ROM
in the sampled time interval.

Future work will extend the presented method to a longer integration time interval or to
a different flow parameter configuration that implies an appropriate definition of the POD
basis and a proper implementation of the non-linear term DEIM operator. Finally, the
perspective will be the integration of the presented technique in a coupled fluid-structure
problem in which the structure motion depends on the aerodynamics loads.
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