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Abstract. In this paper the torsional vibration of size-dependent viscoelastic nanorods
embedded in an elastic medium with different boundary conditions is investigated. The
novelty of this study consists of combining the nonlocal theory with the strain and velocity
gradient theory to capture both softening and stiffening size-dependent behavior of the
nanorods. The governing equation of motion and its boundary conditions for the vibration
analysis of nanorods are derived by employing Hamilton’s principle. It is shown that the
expressions of the classical stress and the stress gradient resultants are only defined for
different values of the nonlocal and strain gradient parameters. The case where these are
equal may seem to result in an inconsistency to the general equation of motion and the
related non-classical boundary conditions. A rigorous investigation is conducted to prove
that that the proposed solution is consistent with physics. Damped eigenvalue solutions
are obtained analytically and results of linear free vibration response are obtained for
various length-scales.

1 INTRODUCTION

Over the past few decades the demand of nanomaterials has been increasing enormously
in various applications like actuators, sensors, microscopes, micro/nano electro mechanical
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systems (MEMS)/(NEMS). Micro/Nano-scaled structures are made of structural elements
which can be in the form of bars, rods, beams, plates or shell structures. Recently, several
non-classical continuum theories that incorporate the effect of material length scales have
been proposed in the literature to predict the behavior of nanostructures. These include
nonlocal, gradient elasticity and couple stress theories or a combination of these theories.

Nonlocal theories assume that the stress at a point is not a function of the strain
at that point but is a function of the strain in the entire domain containing the points
[1]. Nonlocal elastic models can only model nanostructures exhibiting softening behavior
which indicates that ”smaller is more compliant” [2].

On the other hand, the gradient elasticity theory stipulates that nanostructures should
be modeled as atoms with higher-order deformation mechanism and the total stress should
account for some additional strain gradient terms [3]-[4]. Furthermore, gradient elasticity
theory can only model nanostructures exhibiting hardening behavior which indicates that
”smaller is stiffer” [2]. Therefore, it can be concluded that combining both theories allows
the modeling of nanostructures exhibiting at the same time hardening and softening
behavior. This has been confirmed experimentally through measurements on certain
nanostructures [5].

Micro/nano rods subjected to torsional loads have been widely used in various types of
MEMS/NEMS applications including torsional springs in NEMS oscillators [6], torsional
micromirrors [7] and torsional microscanners [8]. Therefore, the accurate modeling of
the static and dynamic torsional behavior of micro/nano bars seems to be essential in
order to understand the mechanical behavior of these micro/nano systems. There have
been few studies related to the size-dependent torsional vibration of nanotubes/nanorods.
Most of these studies utilized the differential nonlocal model [9]-[15]. On the other hand,
Kahrobaiyan et al. [16] used strain gradient theory to obtain closed-form analytical
solutions for the static and free torsional vibration of a microbar.

A review of the works related to torsional vibration of nanorods revealed that they were
either based on nonlocal elasticity theory or strain gradient theory and did not account
for viscoelastic effects. The novelty of this paper consists of combining the nonlocal
theory with the strain and velocity gradient theory to study the torsional vibration of a
viscoelastic nanorod embedded in an elastic medium. This theory involves three length-
scale parameters, namely, a nonlocal, a strain gradient and a velocity gradient parameter
denoted, respectively, µ0, ls and lk. It will be shown that the expressions of the classical
stress and the stress gradient resultants are only defined when µ0 6= ls. The case µ0 = ls
may seem to result in an inconsistency to the general equation of motion and the related
non-classical boundary conditions. In fact, the expression of the stress gradient resultant
may suggest an infinite value when µ0 = ls [17]. However, as an additional novelty of this
work, it will be shown that calculating the limit of the stress gradient resultant is finite
and, therefore, the proposed solution will not show any inconsistency.

2 NONLOCAL STRAIN GRADIENT VISCOELASTIC THEORY

The nonlocal strain gradient theory proposed by [18, 19] stipulates that the total stress
tensor t accounts for both the nonlocal stress tensor σ and the higher-order strain gradient
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nonlocal stress tensor ∇σ(1), in which σ(1) is the higher-order nonlocal stress tensor.

t = σ −∇σ(1) (1)

where ∇ is the gradient operator and σ and σ(1) are given by

σ =

∫
V

α0 (|x− x′| , e0a)C : ε (x′) dV (2a)

σ(1) = l2s

∫
V

α1 (|x− x′| , e1a)C : ∇ε (x′) dV (2b)

in which ε (x′) and ∇ε (x′) are, respectively, the classical strain tensor and its gradient
at point x′, C is the fourth-order elasticity tensor, ls is the strain gradient length-scale
parameter, e0a and e1a are nonlocal parameters representing the significance of the inter-
atomic long-range force, and α0 and α1 are kernel functions.

In view of the difficulty in using the integral constitutive relations (1), (2a) and (2b),
Eringen [1] proposed an equivalent differential model. Thus, assuming e0a = e1a = ea =
µ0 and for a suitable choice of the kernel functions α0 and α1, Eqs. (2a) and (2b) become(

1− µ2
0∇2

)
σ = C : ε (3a)(

1− µ2
0∇2

)
σ(1) = l2sC : ∇ε (3b)

where ∇2 is the Laplacian operator. Substituting (3a) and (3b) into (1) yields(
1− µ2

0∇2
)
t =

(
1− l2s∇2

)
C : ε (4)

Furthermore, for a torsional rod-type structure defined in a cylindrical coordinate system
(r, θ, x) where r is the radial axis, θ is the angular axis and x is the longitudinal axis,
we assume the size-dependency is only accounted for in the longitudinal direction and
neglected in the other directions. Therefore, Eq. (4) can be reduced to the following:(

1− µ2
0

∂2

∂x2

)
trθ =

(
1− l2s

∂2

∂x2

)
Gεrθ (5)

where ∇2 was replaced by ∂2/∂x2, trθ is the total shear stress, εrθ is the shear strain
and G is the rod’s modulus of rigidity. This model combines Eringen’s nonlocal elasticity
theory and strain gradient theory to obtain the Nonlocal Strain Gradient (NSG) theory.
Viscoelastic damping may be added to the constitutive relation (5) by incorporating the
Kelvin–Voigt viscoelastic model which then becomes(

1− µ2
0

∂2

∂x2

)
trθ =

(
1− l2s

∂2

∂x2

)
G (εrθ + gε̇rθ) =

(
1 + g

∂

∂t

)(
1− l2s

∂2

∂x2

)
Gεrθ (6)

where g is the damping coefficient and ε̇rθ = ∂εrθ/∂t is the rate of shear strain with
respect to the time variable t.
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3 EQUATION OF MOTION OF SIZE-DEPENDENT RODS

The displacement field in a rod of volume V , length L and cross-sectional area A takes
the following form:

θ1 = θ (x, t) , θ2 = 0, θ3 = 0 (7)

Here θ1, θ2 and θ3 denote the time dependent rotations about the x, y and z directions,
respectively. The shear strain of a torsional rod and its gradient with respect to x can
be, respectively, written as

εrθ = r
∂θ

∂x
, εrθ,x = r

∂2θ

∂x2
(8)

The strain energy, U , after integrating by parts and using Eq. (8) is then

U =

∫
V

(
σrθεrθ + σ

(1)
rθxεrθ,x

)
dV =

∫ L

0

T
∂θ

∂x
dx+

[
T (1) ∂θ

∂x

]L
0

(9)

where T and T (1) are stress resultants of, respectively, the total stress and the higher-order
stress which are given below in addition to the stress resultant of the classical stress T (0)

T =

∫
A

rtrθdA, T (1) =

∫
A

rσ
(1)
rθxdA, T (0) =

∫
A

rσrθdA (10)

Considering the torsional motion of the rod and its velocity gradient, the kinetic energy,
K, can be written as

K =
1

2
ρJ

∫ L

0

(
∂θ

∂t

)2

dx+
1

2
ρJl2k

∫ L

0

(
∂2θ

∂x∂t

)2

dx (11)

where ρ is the density of the rod and lk is the kinetic material length-scale parameter as-
sociated with the velocity gradient. The surrounding medium is assumed to be a Winkler
type model, where kEM is the linear torsional stiffness. Then, the external work done by
the surrounding medium is

W = −
∫ L

0

kEMθ
2dθ (12)

The equation of motion is obtained by applying Hamilton’s Principle and the funda-
mental lemma of calculus variations. After integration by parts with respect to t as well
as x, and setting the initial conditions to zero, the following equation of motion can be
derived:

−ρJ ∂
2θ

∂t2
+ ρJl2k

∂4θ

∂x2∂t2
+
∂T

∂x
− kEMθ = 0 (13)
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After some mathematical manipulations, the expression of T in terms of the rotation as

T = GJ

(
∂θ

∂x
+ g

∂2θ

∂x∂t

)
−GJl2s

(
∂3θ

∂x3
+ g

∂4θ

∂x3∂t

)
+

µ2
0ρJ

(
∂3θ

∂x∂t2
− l2k

∂5θ

∂x3∂t2

)
+ µ2

0kEM
∂θ

∂x

(14)

Furthermore, differentiating this expression for T with respect to x and substituting into
Eq. (13) gives the equation of motion in terms of the rotation as

ρJ

[
−∂

2θ

∂t2
+ l2k

∂4θ

∂x2∂t2
+ µ2

0

(
∂4θ

∂x2∂t2
− l2k

∂6θ

∂x4∂t2

)]
+

GJ

[
∂2θ

∂x2
+ g

∂3θ

∂x2∂t
− l2s

(
∂4θ

∂x4
+ g

∂5θ

∂x4∂t

)]
− kEM

(
θ − µ2

0

∂2θ

∂x2

)
= 0

(15)

This governing equation of motion for θ is subjected to the following classical and non-
classical boundary conditions specified at each of the ends x = 0 and x = L:

T = 0 or θ = 0 (16)

T (1) = 0 or
∂θ

∂x
= 0 (17)

Performing further mathematical manipulations leads to the expressions of the stress
resultants of the classical stress T (0) and the stress gradient T (1) in terms of the rotation

T (0) =
µ4
0

µ2
0 − l2s

[
kEM

∂θ

∂x
+ ρJ

(
∂3θ

∂x∂t2
− l2k

∂5θ

∂x3∂t2

)]
−

GJ
µ2
0l

2
s

µ2
0 − l2s

(
∂3θ

∂x3
+ g

∂4θ

∂x3∂t

)
+GJ

(
∂θ

∂x
+ g

∂2θ

∂x∂t

) (18)

T (1) =
µ4
0l

2
s

µ2
0 − l2s

[
kEM

∂2θ

∂x2
+ ρJ

(
∂4θ

∂x2∂t2
− l2k

∂6θ

∂x4∂t2

)]
−

GJ
µ2
0l

4
s

µ2
0 − l2s

(
∂4θ

∂x4
+ g

∂5θ

∂x4∂t

)
+GJl2s

(
∂2θ

∂x2
+ g

∂3θ

∂x2∂t

) (19)

Using the following non-dimensional parameters:

ξ =
x

L
, τ =

t

L

√
G

ρ
, θ(x, t) = θ(ξ, τ)

µ̂0 =
µ0

L
, ĝ =

g

L

√
G

ρ
, l̂s =

ls
L
, l̂k =

lk
L
, k̂EM =

kEML
2

GJ
, (20)
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the governing equations, Eq. (15), along with the associated boundary conditions, Eqs.
(16) and (17), can be written in non-dimensional form as

−∂
2θ

∂τ 2
+ l̂2k

∂4θ

∂ξ2∂τ 2
+ µ̂2

0

(
∂4θ

∂ξ2∂τ 2
− l̂2k

∂6θ

∂ξ4∂τ 2

)
+

∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− l̂2s

(
∂4θ

∂ξ4
+ ĝ

∂5θ

∂ξ4∂τ

)
− k̂EM

(
θ − µ̂2

0

∂2θ

∂ξ2

)
= 0

(21)

subject to the boundary conditions specified at each of the ends ξ = 0 and ξ = 1

T̂ = 0 or θ = 0 (22a)

T̂ (1) = 0 or
∂θ

∂ξ
= 0 (22b)

The non-dimensional expressions of the stress resultants T , T (0) and T (1) are given by

T̂ = µ̂2
0kEM

∂θ

∂ξ
+ µ̂2

0

(
∂3θ

∂ξ∂τ 2
− l̂2k

∂5θ

∂ξ3∂τ 2

)
−

l̂2s

(
∂3θ

∂ξ3
+ ĝ

∂4θ

∂ξ3∂τ

)
+

(
∂θ

∂ξ
+ ĝ

∂2θ

∂ξ∂τ

) (23)

T̂ (0) =
µ̂4
0

µ̂2
0 − l̂2s

[
kEM

∂θ

∂ξ
+

(
∂3θ

∂ξ∂τ 2
− l̂2k

∂5θ

∂ξ3∂τ 2

)]
−

µ̂2
0l̂

2
s

µ̂2
0 − l̂2s

(
∂3θ

∂ξ3
+ ĝ

∂4θ

∂ξ3∂τ

)
+

(
∂θ

∂x
+ ĝ

∂2θ

∂ξ∂τ

) (24)

T̂ (1) =
µ̂4
0

µ̂2
0 − l̂2s

(
k̂EM

∂2θ

∂ξ2
+

∂4θ

∂ξ2∂τ 2
− l̂2k

∂6θ

∂ξ4∂τ 2

)
−

µ̂2
0l

2
s

µ̂2
0 − l̂2s

(
∂4θ

∂ξ4
+ ĝ

∂5θ

∂ξ4∂τ

)
+ l̂2s

(
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ

) (25)

4 ANALYTICAL SOLUTION OF THE VIBRATION PROBLEM

The solution of the non-dimensional Partial Differential Equation (PDE) (21) proceeds
in the usual way by assuming a separable solution of the form θ(ξ, τ) = φ(ξ)est. The
resulting Ordinary Differential Equation (ODE) for φ(ξ) can be written as

α(s)
d4φ

dξ4
+ β(s)

d2φ

dξ2
+ γ(s)φ = 0 (26)

where

α(s) = s2l̂2kµ̂
2
0+ĝsl̂2s+ l̂2s , β(s) = −

(
s2l̂2k + s2µ̂2

0 + k̂EM µ̂
2
0 + ĝs+ 1

)
, γ(s) = s2+k̂EM (27)

Since Eq. (26) is a linear ODE for fixed s, the solution is of the form φ(ξ) = Ceλξ, which
gives a quadratic equation in λ2 as
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α(s)λ4 + β(s)λ2 + γ(s) = 0 (28)

which has four solutions λi(s) for i = 1, . . . , 4.
Three sets of boundary conditions are now considered for the torsional rod, where

the mode shapes may be determined directly. These special cases are (a) Clamped
Forcing-Clamped Forcing (CF-CF), (b) Clamped Forcing - Free Strained (CF-FS), (c)
Free Strained - Free Strained (FS-FS). Table 1 gives the mode shapes, where Cn is an ar-
bitrary constant, and it is straightforward to verify that these functions satisfy the given
boundary conditions by directly substituting into the expressions for T̂ and T̂ (1) given
earlier. Here we will assume that µ̂0 6= l̂s for the CF-CF and FS-FS cases, since T̂ (1) given
by Eq. (25) is not defined when µ̂0 = l̂s; the solution for µ̂0 = l̂s is considered in detail in
the next section. The mode shapes in Table 1 give direct expressions for λi, which may
be substituted into Eq. (28), using the expressions for α, β and γ from Eq. (27), to give
the following quadratic equation for s:

as2 + bs+ c = 0 (29)

where the expressions of a, b and c for the three boundary conditions CF-CF, CF-FS
and FS-FS are given in Table 2. This quadratic equation is easily solved to obtain the
solutions for s, and hence the corresponding natural frequencies and damping ratios.
For each set of boundary conditions, solutions for particular cases of interest can be
obtained, namely, local undamped (µ̂0 = l̂k = l̂s = ĝ = 0), local damped (µ̂0 = l̂k = l̂s = 0)
and asymptotic cases. In the last case, the asymptotic frequencies are obtained by taking
the asymptotic expansion of Eq. (29) when n→∞ and then keeping the leading terms of
order n4 before solving for s to give the natural frequencies and damping ratios. It is worth
noting that the solutions for the CF-CF and FS-FS boundary conditions are identical
because the ordinary differential equation (26) contains d4φ

dξ4
and d2φ

dξ2
and the mode shapes

for these boundary conditions are, respectively, given by sin(nπξ) and cos(nπξ).

5 FORMULATION AND SOLUTION FOR PARTICULAR CASE µ̂0 = l̂s

The partial differential equation for θ given in Eq. (21) is well defined for µ̂0 = l̂s, and
is given by

−∂
2θ

∂τ 2
+ l̂2k

∂4θ

∂ξ2∂τ 2
+
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− k̂EMθ+

µ̂2
0

(
∂4θ

∂ξ2∂τ 2
− l̂2k

∂6θ

∂ξ4∂τ 2
− ∂4θ

∂ξ4
− ĝ ∂5θ

∂ξ4∂τ
+ k̂EM

∂2θ

∂ξ2

)
= 0

(30)

This differential equation can be conveniently written as(
1− µ̂2

0

∂2

∂ξ2

)
L (θ) = 0 (31)

where

L (θ) = −∂
2θ

∂τ 2
+ l̂2k

∂4θ

∂ξ2∂τ 2
+
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− k̂EMθ (32)

7
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Table 1: Boundary conditions (BC) and modeshapes for the analytical solution.

BC BC Equations Mode shape λ2n

C
F

-C
F φ(0) = 0, T̂ (1)(0) = 0, φ(ξ) = Cn sin(nπξ) −n2π2

φ(1) = 0, T̂ (1)(1) = 0 n ≥ 1

C
F

-F
S φ(0) = 0, T̂ (1)(0) = 0, φ(ξ) = Cn sin

(
2n−1

2
πξ
)

−
(
n− 1

2

)2
π2

dφ(1)
dξ

= 0, T̂ (1) = 0 n ≥ 1

F
S
-F

S dφ(0)
dξ

= 0, T̂ (0) = 0, φ(ξ) = Cn cos(nπξ) −n2π2

dφ(1)
dξ

= 0, T̂ (1) = 0 n ≥ 0

Table 2: Expressions of the constants of the characteristic polynomial asociated with the analytical
solution.

Case Polynomial constants

CF-CF a = n4π
4
l̂2kµ̂

2
0 + n2π2l̂2k + n2π2µ̂2

0 + 1

& FS-FS b = ĝn4π4l̂2s + ĝn2π2

c = n4π4l̂2s + n2π2k̂EM µ̂
2
0 + n2π2 + k̂EM

a =
(
n− 1

2

)4
π4l̂2kµ̂

2
0 +

(
n− 1

2

)2
π2
(
l̂2k + µ̂2

0

)
+ 1

CF-FS b = ĝ
(
n− 1

2

)4
π4l̂2s + ĝ

(
n− 1

2

)2
π2

c =
(
n− 1

2

)4
π4l̂2s +

(
n− 1

2

)2
π2
(
k̂EM µ̂

2
0 + 1

)
+ k̂EM

8
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However, the expressions for the classical stress and the stress gradient resultants given
in non-dimensional form in Eqs. (24) and (25) are not defined when µ̂0 = l̂s. In this case,
it can be shown that the total stress resultant given by (23) degenerates to

T̂ =

(
∂θ

∂ξ
+ ĝ

∂2θ

∂ξ∂τ

)
(33)

Consider now the calculation of the higher order stress T̂ (1) when µ̂0 = l̂s. This cannot
be calculated from Eq. (25), because the denominator term µ̂2

0− l̂2s is zero. To determine
T̂ (1), the solution proceeds in the usual way by assuming a separable solution of the form
θ(ξ, τ) = φ(ξ)est, which gives a linear fourth order ODE for φ(ξ). The general solution is

φ(ξ) = C1e
λ(s)ξ + C2e

−λ(s)ξ + C3e
µ̂0ξ + C4e

−µ̂0ξ (34)

where λ is obtained from

λ2
(
l̂2ks

2 + 1 + ĝs
)
− s2 − k̂EM = 0 (35)

After few mathematical manipulations, it can be shown that the second equation of (10)
can be written as

T̂ (1)(ξ) = (1 + ĝs) µ̂2
0

(
C1e

λξ + C2e
−λξ

λ2 − µ̂2
0

− C3ξe
µ̂0ξ − C4ξe

−µ̂0ξ

2µ̂3
0

)
(36)

This gives the relationship between the Ci coefficients to implement boundary conditions
for T̂ (1) when µ̂0 = l̂s. For the three boundary conditions CF-CF, CF-FS and FS-FS, and
using the same mode shapes as in the general case, the eigenvalues s, are the solutions of
the quadratic equation in Eq. (29), where expressions for a, b and c are given in Table 3.

To show the consistency of the solution, Figs. 1 and 2 illustrate the variation of the
first three frequencies and damping ratios as a function of ∆µls = l̂s− µ̂0 for CF-CF/FS-
FS and CF-FS boundary conditions, respectively. When µ̂0 is close to l̂s, the solution is
computed based the equation of motion (21). For the particular case where µ̂0 = l̂s, the
solution is computed based on the equation of motion (31) and is shown with the symbol
◦ in Figs. 1 and 2. It is evident from these figures that the frequency and damping ratio
solutions are continuous and do not show any sign of inconsistency.

6 CONCLUSIONS

A combined nonlocal strain and velocity gradient theory was used to study the size-
dependent torsional vibration of a viscoelastic nanorod embedded in an elastic medium.
The equation of motion and the related boundary conditions were derived using the Hamil-
tonian principle. Frequencies and damping ratios were obtained for different classical and
non-classical boundary conditions. The case where the strain gradient and nonlocal pa-
rameters are equal (ls = µ0) may seem to result in an inconsistency to the general equation
of motion and the related non-classical boundary conditions. A study of this case was
treated thoroughly in this paper demonstrating that the proposed solution would not
show any inconsistency.
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Table 3: Expressions of the constants of the characteristic polynomial and the corresponding eigenvalues
for the particular case µ̂0 = l̂s.

Case Polynomial constants Eigenvalue solution

a = n2π2lk
2 + 1

CF-CF & FS-FS b = gn2π2 −b±
√
b2 − 4ac

2a
c = n2π2 + kEM

a =
(
n− 1

2

)2
π2l2k + 1

CF-FS b = g
(
n− 1

2

)2
π2 −b±

√
b2 − 4ac

2a
c =

(
n− 1

2

)2
π2 + kEM

lk=0.02 lk=0.04 lk=0.06

μ0=0.05 μ0=0.1 μ0=0.2

Figure 1: Variation of the first three frequencies and damping ratios as a function of ∆µls = l̂s− µ̂0 for
CF-CF / FS-FS boundary conditions (ie, when µ̂0 is equal or close to l̂s); k̂EM = 1; Symbol ◦ in the plot

is obtained from solution of particular case µ̂0 = l̂s given in Table 2.
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lk=0.02 lk=0.04 lk=0.06

μ0=0.05 μ0=0.1 μ0=0.2

Figure 2: Variation of the first three frequencies and damping ratios as a function of ∆µls = l̂s − µ̂0

for CF-FS boundary conditions (ie, when µ̂0 is equal or close to l̂s); k̂EM = 1; Symbol ◦ in the plot is

obtained from solution of particular case µ̂0 = l̂s given in Table 2.
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