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Abstract. We propose a three dimensional non-hydrostatic shock-capturing numerical model 

for the simulation of wave propagation, transformation and breaking, which is based on an 

original integral formulation of the contravariant Navier-Stokes equations, devoid of 

Christoffel symbols, in general time-dependent curvilinear coordinates. 
 

 

1 INTRODUCTION 

In recent years, the numerical simulation of the wave motion and the associated 

hydrodynamic phenomena in coastal regions has been the subject of several publications. One 

of the most used approaches is based on the depth averaged motion equations
[1-5]

, which are 

obtained by assuming a simplified distribution of the hydrodynamic quantities along the 

vertical direction (depth averaged models). This approach proves to be valid only in the cases 

in which a fully three dimensional representation of the motion is not needed. 

A different approach for the wave motion simulation is based on the numerical integration 

of the three-dimensional Navier-Stokes equations. Some of the most recent models based on 

this approach use a coordinate transformation in the vertical direction, named sigma 

coordinate transformation, by which the Cartesian vertical coordinate is expressed as a 

function of a moving vertical coordinate, �, which adjusts to the free surface motions
[6-8]

. This 

coordinate transformation does not concern the horizontal coordinates �� and ��, 

consequently does not allow to accurately represent the coastal regions complex geometries.
 

In order to overcome the limits that are imposed by Cartesian grids, the numerical 

simulation of the fluid motion in three-dimensional form on domains characterised by 

complex geometries can be carried out by using boundary conforming curvilinear coordinate 

systems and by expressing the governing equations in contravariant formulation. 

A complete differential contravariant formulation of the Navier-Stokes equations in time 

varying, curvilinear coordinates was achieved by Ogawa and Ishiguro
[9]

 and Luo and 

Bewley
[10]

. Such differential form includes the covariant derivatives of contravariant vectors 

which imply the presence of the Christoffel symbols, that prevents the convective terms of the 
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motion equations from being expressed in conservative form
[11]

. It is known
[12]

 that the 

numerical methods for the solution of conservation laws in which the convective terms are 

expressed in non-conservative form, do not guarantee the convergence to the weak solution, 

i.e. the solution that may contain discontinuities. In order to obtain a numerical model for the 

solution of conservation laws which is able to converge to the weak solution, it is necessary to 

express the convective terms of the differential motion equations in conservative form or 

express the motion equations directly in integral form
[12]

. 

In order to realise a three dimensional numerical model which is able to simulate the 

discontinuities in the solution related to the wave breaking on domains that reproduce the 

complex geometries of the coastal regions, we propose an integral contravariant form of the 

Navier-Stokes equations, devoid of the Christoffel symbols, in a time dependent curvilinear 

coordinate system. The resulting equations represents the general integral contravariant 

formulation of the momentum equation in a time dependent curvilinear coordinate system. 

Indeed, taking the limit as the volume approaches zero, with simple passages it is easy to 

obtain the complete differential formulation of the contravariant Navier-Stokes equations in a 

time dependent curvilinear coordinate system, which is the same as the one obtained by Luo 

and Bewley
[10]

. 

The motion equations are numerically solved in order to realize a three dimensional non-

hydrostatic shock capturing numerical model which is able to simulate wave propagation and 

the nonlinear hydrodynamic wave phenomena related to it. 

 

2 MODEL FORMULATION 

Let	H�x�, x�, t� = h�x�, x�, t� + η�x�, x�, t� be the total water depth, where h is the 

undisturbed water depth and η is the free surface elevation with respect to the undisturbed 

level. We indicate the acceleration due to gravity by G and we split the pressure p into a 

hydrostatic part, ρG�η − x��, and a dynamic one, q. 

In order to accurately represent the complex geometry of a curved shaped coastal region 

and to follow the wave induced free surface evolution, we consider the following time 

dependent transformation from the Cartesian system of coordinates, �x�, x�, x��, to the 

moving curvilinear system of coordinates, �ξ�, ξ�, ξ�� 
ξ� = ξ��x�, x�, x��   ;   ξ� = 	ξ��x�, x�, x��   ;   ξ� = �������,���

����,��,��    ;   τ = t (1) 

where the horizontal curvilinear coordinates ξ� and 	ξ� conform to the horizontal boundaries 

of the physical domain and the vertical coordinate 	ξ� varies over time to adapt to the free 

surface movements. This coordinate transformation basically maps the irregular, varying 

domain in the physical space to a regular, fixed domain in the transformed space, where ξ� 

spans from 0 to 1. 

Let g!"�#� = ∂x!" ∂ξ#⁄  be the covariant base vectors and g!"�#� = ∂ξ# ∂x!"⁄  the contravariant base 

vectors (l = 1,3). The covariant and contravariant metric coefficients are defined, 

respectively, by g#) = g!"�#� ∙ g!"�)� and g#) = g!"�#� ∙ g!"�)� (l, m = 1,3). The Jacobian of the 

transformation is given by ,g = ,|g#)|, where | | denotes the determinant of the covariant 

metric coefficients g#). The transformation relationships between the components of the 
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generic vector b!" in the Cartesian coordinate system and its contravariant and covariant 

components, b# and b#, in the curvilinear coordinate system are 

b# = g!"�#� ∙ b!"      ;      b!" = b#g!"�#�      ;      b# = g!"�#� ∙ b!"      ;      b!" = b#g!"�#� (2) 

in which (and hereinafter) the summation convention, where repeated indices are 

automatically summed over, is employed. 

In the model here presented, the physical domain occupied by the fluid is described by 

moving curvilinear coordinate lines and is represented by computational grid cells. The upper 

boundary of the computational grid moves rigidly with the free surface, while internal grid 

nodes move in order to preserve a given distribution along the water depth. Thus, the grid cell 

faces that lie on the free surface move with the same fluid velocity, while the other grid cell 

faces move with a different velocity. Since the computational grid cells are used as control 

volumes, the Navier-Stokes equations are need to be written in integral form on a control 

volume whose boundary surfaces move with a velocity different from the fluid velocity. The 

integral form of the continuity equation, in the time varying curvilinear coordinate system can 

be written as 

d
dτ0 ρdV

∆3�4�
+0 ρ�u) − v)�n)dA∆9�4�

= 0 (3) 

where u) (m = 1,3) are the contravariant components of the fluid velocity vector, v) are the 

contravariant components of the velocity vector with which the points belonging to the 

surface area ∆A�τ� move and n) are the covariant components of the outward unit vector 

normal to the surface of area ∆A�τ�. Since the surfaces ∆A�τ� lie on curved surfaces (in the 

physical space) which are used as coordinate surfaces of the curvilinear coordinate system, v) is equal to the contravariant components of the velocity vector of the moving coordinates, v;<) . It is easy to demonstrate that the m�� contravariant component of this velocity vector is v;<) = −=∂ξ)�x�, x�, x�, t� ∂t⁄ >|�!"?@AB�. 
In the curvilinear coordinate system, in order to express the momentum conservation law 

in integral form, the rate of change of the momentum of the material volume and the net force 

acting on it must be projected in a physical direction. The direction in space of a given 

curvilinear coordinate line changes, in contrast with the Cartesian case. Thus, the volume 

integral of the projection of motion equations onto a curvilinear coordinate line has no 

physical meaning since it does not represent the volume integral of the projection of the 

aforementioned equations in a physical direction
[11]

. We identify a physical direction with the 

direction of a constant and parallel vector field λ!". This vector field is represented in the 

Cartesian coordinate system by constant and uniform components and in the curvilinear 

coordinate system by constant and space-varying (not uniform) components, λ#. Indeed, since 

the base vectors of the curvilinear coordinate system vary from point to point, also the relative 

values of vector components λ# must vary in order to represent the same physical direction at 

every point. As a constant and parallel vector field λ!", we choose the one which is normal to 

the coordinate line on which the ξ# coordinate is constant at point PE�ξE�, ξE�, ξE�� ∈ ∆V. The 

contravariant base vector at point PE, indicated by g!"�#��ξE� , ξE�, ξE��, is by definition normal to the 

coordinate line on which ξ# is constant and is used in this work to identify the above vector 
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field. Let λG�ξ�, ξ�, ξ�� be the covariant component of g!"�#��ξE�, ξE�, ξE��, given by λG�ξ�, ξ�, ξ�� =g!"�#��ξE�, ξE�, ξE�� ∙ g!"�G��ξ�, ξ�, ξ��, and let indicate gH!"�#� = g!"�#��ξE�, ξE�, ξE�� and g!"�G� = g!"�G��ξ�, ξ�, ξ��. 
The momentum conservation law reads 

d
dτ0 gH!"�#� ∙ g!"�G�ρuGdV∆3�4�

+0 gH!"�#� ∙ g!"�G�ρuG�u) − v)�n)dA∆9�4�
= 

0 gH!"�#� ∙ g!"�G�ρfGdV∆3�4�
+0 gH!"�#� ∙ g!"�G�TG)n)dA∆9�4�

 

(4) 

where f # (l = 1,3) are the contravariant components of the external body forces per unit mass 

vector and T#) are the contravariant components of the stress tensor. 

Let ,gE = k!" ∙ Lg!"���⋀g!"���N, where k!" indicates the vertical unit vector and ⋀ indicates the 

vector product. It is not difficult to verify that in the specific case of the above mentioned 

transformation, the Jacobian of the transformation can be written in the form ,g = H,gE . 

This makes it possible to write an original three-dimensional integral contravariant 

conservative form of the momentum, in which the conserved variables are given by the cell 

averaged product between the water depth H and the three contravariant components of the 

punctual velocity u# with l = 1,3. To this end, we define the cell averaged values in the 

transformed space as HO = �
∆9P�,QP R H,gEdξ�dξ�∆9S�  and 

Hu#TTTTT = �
∆3P,QP R gH!"�#� ∙ g!"�G�uGH,gEdξ�dξ�dξ�∆3P , where a restrictive condition has been 

introduced on the control volume ∆V�τ� that defines ∆V�τ� as the volume of a physical space 

that is bounded by surfaces lying on the curvilinear coordinate surfaces. In the curvilinear 

coordinate system ∆V�τ� = 	R ,gdξ�dξ�dξ�∆3P , where ∆VE = ∆ξ�∆ξ�∆ξ� indicates the 

corresponding volume in the transformed space. Analogously, in the curvilinear coordinate 

system, the area of a surface of the physical space that lies on the coordinate surface in which 

ξU is constant is ∆AU�τ� = R Vg!"�W�⋀g!"�X�VdξWdξX∆9PY , where ∆AEU = ∆ξW∆ξX indicates the 

corresponding area in the transformed space. It must be noted that the volume ∆V�τ� and the 

surfaces ∆AU�τ� are functions of time, because they are expressed as functions of the base 

vectors, g!"�#�, and the Jacobian of the transformation, ,g, whose values change over time as 

the curvilinear coordinates follow the displacements of the free surface. Conversely, the 

volume ∆VE and the areas ∆AEU are not time dependent. 

By adopting the volume ∆V�τ� defined above as control volume and by using the 

definition of the cell averaged values HO and Hu#TTTTT, in the transformed space, equations 3 and 4 

can be rewritten in an integral contravariant expression of the three-dimensional motion 

equations, in which the Christoffel symbols are absent, in the time dependent coordinate 

system, �ξ�, ξ�, ξ�, τ� 
∂HO
∂τ = 1

∆AA�,gE Z[0 0 uUH,gEdξWdξ�∆\SY]
�

E
−0 0 uUH,gEdξWdξ�∆\SY^

�
E

_
�

U?�
 (5) 
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∂Hu#TTTTT
∂τ = − 1

∆VE,gE Z`0 agH!"�#� ∙ g!"�G�HuG�uU − vU� + gH!"�#� ∙ g!"�U�GH�b,gEdξWdξX∆9SY]

�

U?�
−0 agH!"�#� ∙ g!"�G�HuG�uU − vU� + gH!"�#� ∙ g!"�U�GH�b,gEdξWdξX∆9SY^

c 

+ 1
∆VE,gE Z`0 gH!"�#� ∙ g!"�U�GhH,gEdξWdξX∆9SY]

−0 gH!"�#� ∙ g!"�U�GhH,gEdξWdξX∆9SY^
c

�

U?�
 

+ 1
∆VE,gE Z`0 gH!"�#� ∙ g!"�G� T

GU
ρ H,gEdξWdξX∆9SY]

−0 gH!"�#� ∙ g!"�G� T
GU
ρ H,gEdξWdξX∆9SY^

c
�

U?�
− 1
∆VE,gE 0 gH!"�#� ∙ g!"�)� ∂q

∂ξ) H,gEdξ�dξ�dξ�∆3P
	

(6) 

where the continuity equation has been integrated over a vertical water column which is 

bounded by coordinate surfaces, between the bottom (impenetrability condition u� = 0) and 

the free surface (kinematic condition v� = u�). In equation 5 ∆ξAU�and ∆ξAUd (with α = 1,2� 
indicate the contour line of the surface element ∆AA�  on which ξU is constant and which are 

located at the larger and at the smaller value of ξU respectively, and the last two terms on the 

right hand side are calculated, respectively, at the free surface (ξ� = 1) and at the bottom 

(ξ� = 0). In equation 6 TGU is now the stress tensor in which the pressure is omitted, the 

gradient of the hydrostatic pressure is split into two parts by using η = H − h and the last 

integral on the right hand side of equation 6 is related to the gradient of the dynamic pressure. 

The resulting motion equations are numerically solved, on a time dependent curvilinear 

coordinate system, by a finite volume shock capturing scheme, which uses an approximate 

HLL-type Riemann solver
[13]

. The advancing in time of the numerical solution is carried out 

by a second order accurate Strong Stability Preserving Runge-Kutta (SSPRK) fractional-step 

method in which, at every stage of the Runge-Kutta method, a predictor velocity field is 

obtained by the shock-capturing scheme and a corrector velocity field is added to the previous 

one, in order to produce a non-hydrostatic divergence-free velocity field and to update the 

water depth. The corrector velocity field is obtained by solving a Poisson equation, expressed 

in integral contravariant form. This equation is solved through a multigrid method which uses 

a four-colour Zebra Gauss-Seidel line-by-line method as smoother. 

 

3 MODEL RESULTS 

In this section, the results obtained by numerically reproducing the laboratory experiment 

carried out by Hamm
[14]

 are shown and discussed. This test simulates breaking waves 

propagation on a plane sloping beach of 1:30 with a rip channel excavated along the 

centerline (Figure 1). Incident regular waves are considered with a period of T = 1.25s and 

wave height of H = 0.07m. The simulation is carried out on a curvilinear computational grid 

(Figure 1) and is run for 520s with a time step of 0.0025s. Figure 2 shows a three dimensional 

detail of an instantaneous wave field (contour) carried out with the curvilinear computational 

grid (lines), at the time when the breaking induced circulation is fully developed. It is possible 

to notice that, when approaching the beach, the wave fronts rotate and an increment of the 

wave height in correspondence with the channel location due to the wave-current interaction. 
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Figure 1: Bathymetry (contour) and curvilinear grid (lines) of the computational domain (only one out of every 

three coordinate lines is shown) 

 

Figure 2: Three dimensional detail of an instantaneous wave field (contour) at the time when the breaking 

induced circulation is fully developed and of the curvilinear computational grid (lines) 
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4 CONCLUSIONS 

A three dimensional non-hydrostatic shock-capturing numerical model for the simulation 

of wave propagation, transformation and breaking, has been presented. The proposed model is 

based on an original integral formulation of the contravariant Navier-Stokes equations, devoid 

of Christoffel symbols, in general time-dependent curvilinear coordinates. The contravariant 

Navier-Stokes equations are numerically solved, on a time dependent curvilinear coordinate 

system, by a finite volume shock capturing scheme, which uses an approximate HLL-type 

Riemann solver. A coordinate transformation maps the time-varying irregular physical 

domain to a fixed uniform transformed computational one. 
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