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Abstract. A numerical approach for modeling heterogeneous media composed of multiple 

compressible materials with different physical properties is considered. The model is single- 

velocity, and the governing equations represent mass conservation for each component, 

conservation of the total momentum and energy, and advection of N-1 characteristic functions 

that depend on volume fractions of N components. The isobaric assumption is used to close the 

model equations. We consider the second-order accurate Godunov-type numerical scheme for 

solving the system of governing equations. It is shown that for meeting the PV and monotonicity 

properties of the numerical solutions, different characteristic functions should be taken for the 

advection operator and for the face-interpolator, and such functions are proposed. We test the 

proposed model and numerical method with several benchmark problems. The results obtained 

show that the method is robust and effective in capturing interfaces in multimaterial compressible 

hydrodynamics, providing non-oscillatory and physically admissible solutions.   
 

 

1 INTRODUCTION 

We consider hydrodynamics of a heterogeneous continuum medium that consists of N 

materials (components) separated by sharp interfaces. The components are compressible ideal 

fluids with different equation of states. The mathematical model describing such multi-fluid 

flows consists of the compressible Euler equations closed by the equation of state that change 

the functional form or control parameters when we cross the interface between two 

components. The Lagrangian approach is most appropriate for solving multi-fluid flow 

problems as the interfaces are tracked by grid lines, and the problem solution is naturally split 

into solution of a set of single-material subproblems. However, this approach is rather 

restrictive, and can be applied only for those problems where the deformation of the interface 
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is not too much. 

    Eulerian or Arbitrary Lagrangian-Eulerian (ALE) methods better fit problems with large 

interface deformation. The material interface is typically represented in these methods by 

volume fractions, thermodynamic parameters or  level-set functions. One can distinguish two 

groups of methods that are referred in literature as interface-tracking and interface-capturing, 

respectively. In the first group (interface-tracking), the interface is explicitly calculated or 

restored at each time step, and its location is used in the solution procedure. Methods related 

to this group are: volume-of-fluid [1], moment-of-fluid [2], ALE [3], front-tracking [4], level 

set/ghost fluid [5] schemes, and the ghost fluid method [6]. These methods are not 

conservative nearby the interface and can lead to errors in its positioning.      

Interface-capturing methods [7-9] introduce material-related parameters that can diffuse 

near the interface. These parameters can be thermodynamic parameters in the equation of 

state or volume fractions governed by the advection equation. The intermediate (diffused) 

parameters may cause spurious numerical oscillations in the solution near the interface. Also, 

an important property of maintaining constant pressure and velocity distributions (well-

balancing property) must hold when developing an interface-capturing method for multifluid 

flows.  

The method proposed by Allaire et al. [9] for the case of two fluids is one that meets the 

above requirements. It is designed to be monotone in the vicinity of the interface and meet the 

well-balancing condition. However, its extension to more than two components is not evident. 

A multiple-fluid model must ensure two conditions for the volume fractions. Namely, the 

volume fraction of each fluid must be in the interval [0,1], and the summation of all volume 

fractions must equal 1. Violation of these conditions leads to unphysical numerical solutions 

and even code failure.  

It is noted in [9] that a generalized numerical model to treat more than two fluids can be 

constructed by adding a partial density conservation equation and a volume fraction advection 

equation for each additional fluid component. Later, M.B. Friess and S. Kokh proposed a 

(2N+2)-equation model [10], which is considered to be an extension of the baseline five-

equation model [1] to the case of N (N≥3) components. Their model consists of (2N+2) 

equations, including N conservation equations for partial densities, the conservation equation 

of momentum, the conservation equation of energy, and N advection equations for volume 

fractions. To ensure the above-mentioned two conditions for the volume fractions, recursive 

constructions of the trust interval of the volume fraction are implemented. 

In the present work, we propose an alternative model for multi-fluid flows that is 

represented by the system of (2N+1)-equations. Instead of directly solving the advection 

equation for volume fractions, we use properly chosen advection functions to update and 

reconstruct volume fractions so as to satisfy aforementioned constraint conditions for volume 

fractions. The model is proven to possess consistency of the closure model (i.e., unique 

recovering of primitive variables from conservative variables), hyperbolicity, and entropy 

condition.    

2 NUMERICAL MODEL  

Considering multi-fluid flow, we introduce a color function iz , i=1,..,N which represents 

the volume fraction of the component i in the mixture, 
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and 2N+1 equations for mass conservation of each component, conservation of the total 

momentum and total energy, and advection of N-1 characteristic functions: 
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z are the mixture density, pressure, and specific 

internal energy, respectively, 
2

0.5e u  and H=e+P/ρ are the total energy and enthalpy. The 

Jacobian of the advection functions with respect to the volume fractions must be non zero, 

/ 0f z . 

We assume that material of each fluid is described by a generalized EOS in the following 

form: 

,i i i i i i i i i iP G H .                                                              (3) 

with Gi(ρi)>0. This form includes a wide range of EOS such as ideal gas, van der Waals gas, 

stiffened gas, Mie-Gruneisen EOS for solids. 

    We use the isobaric assumption 1 1 1 1 2 2 2 2, , ,N N N NP P P P  to close the 

system (2). One can prove that this closure model admits unique recovery of pressure P  from 

the vector of conservative variables providing that the EOS of each component is taken in the 

generalized form (3). 

   The FVM method with the HLLC numerical flux is implemented to solve the system of 

equations (2).  To do this, the equations for the characteristic functions in (2) are recast in a 

quasi-conservative form by rearranging grad ( )f div f fdivu u u . The first term can be viewed 

as the flux term and calculated together with the conservative equations of (2) by using the 

HLLC numerical flux. The second (non-conservative) term is then treated as a source term 

and approximated in terms of the cell averaged value f and the face value ( , )nu u n , n is the 

outward unit normal to the face.    

   Thus, the HLLC numerical flux for the conservative part of the system (2) is given by 
* *

* *

1 sgn 1 sgn

2 2
L L L R R R

s s
s sF F W W F W W                       (4) 

where *LW and *RW  are the state vectors characterizing the states on the left and right of the 

intermediate contact wave, respectively,  
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and / / / /min 0, , min ,L R L R L R L Rs s s u c u c  are the estimated wave velocities. The bar here 

means the Roe average. The speed of the contact discontinuity and the velocity in the source 

term (that must be consistent with the velocity used in the conservative numerical flux to hold 

valid the PV condition) are calculated, respectively, as  

*

R L L L L L R R R R

L L L R R R

P P u s u u s u
s

s u s u
                                                     (6) 

* *
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More details regarding the HLLC numerical flux approximation can be found in [15-16].  

3 CHARACTERISTIC ADVECTION FUNCTIONS 

We propose to employ different advection functions for the operator of face interpolation 

and time step updating. The flow of more than two components is different from and more 

complicated than the flow of only two components. For multi-fluid flows with N (N≥3) 

components, if given initial conditions such that: 
0

0

0,1 , , , 1,2, , ,

1, , ,

i L R

N

i L R

i

z x x x x i N

z x x x x
                                       (8) 

the following two conditions should be ensured: 

, 0,1 , , , 0, , 1,2, , , 0,

, 1, , , 0, , 0.
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or  
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These conditions are satisfied by the first order upwind scheme (HLLC scheme), but not 

by nonlinear higher order schemes such as MUSCL and WENO, if they are implemented 

independently to each volume fraction. In fact, when N=2, the two constraints are equivalent. 

This is different from the case of three and more components  when summation of a part of 

the volume fractions may occur larger than 1 after evolution with time, resulting in a negative 

sum of the other volume fractions and inducing spurious oscillations. The root of this defect 

lies in that the interpolated values zcf,i at cell faces may violate constraint (9) or (10). Similar 

problem has been studied by Jaouen [11], where the conditions (9) and (10) are ensured by 

setting a trust interval for the numerical fluxes.  

In the present paper, we deal with this problem in a different way. We propose special 

characteristic functions with which the constraints on volume fractions are kept after the 

implementation of nonlinear interpolation schemes. These characteristic functions for the 

interpolation operator are taken as follows: 
1
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If given initial values of volume fractions satisfy the condition (8), then the initial values of 

characteristic functions fi are constrained by the following condition: 
0 0,1 , , , 1,2, , 1.i L Rf x x x x i N                                 (12) 

When monotonicity-preserving higher-order schemes are applied to fi
0
, the interpolated 

values of  fi
0
 at cell faces will also satisfy the condition (8), 

0

, 0,1 , , , 1,2, , 1.i cf L Rf x x x x i N                             (13) 

where the subscript “cf” indicates the interpolated values at cell faces.  

Combing Eqs. (11) and (13), we obtain the following  
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which means 

, 1 , , ,

1 1 1
0 0 0 0

2 2 1

0 1
cf N cf k cf k cf k

N N N

k N k k

z z z z .                                      (15) 

Comparison of inequality (15) with condition (10) shows that these constraints on volume 

fractions are equivalent. Thus, we obtain interpolated volume fractions at cell faces such that 

the constraints in (9) and (10) are valid.  

Although the characteristic functions in the form of (11) ensure that the interpolated 

volume fractions satisfy the constraints in (9) and (10), they fail to maintain the desirable 

well-balancing property (keeping constant distributions in pressure and velocity). Similar to 

the work [12], one can show that to preserve constant pressure and velocity distributions (the 
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PV property), the advection functions 1 2 1, , ,i Nf z z z  must be linear with respect to zj . In the 

present paper, we choose the following simple characteristic functions to update the volume 

fractions in time: 
1N

i k

k i

f z .                                                                       (16) 

Therefore, we utilize two different sets of characteristic functions: characteristic functions 

(11) for the face interpolation operator and characteristic functions (16) for time step 

updating. 

Since both cell averages and interpolated values of initial volume fractions are kept, the 

evolved cell averages of volume fractions after one time step will also satisfy the constraints 

in (9) and (10). By a recursive procedure, we deduce that the evolved cell averages of volume 

fractions in all the following time steps also will satisfy (9) and (10). 

4 NUMERICAL RESULTS 

In this section, we consider several 2D benchmark problems to examine the performance 

of our method. The approximate Riemann solver HLLC is utilized to calculate the inter-cell 

numerical flux and the explicit Euler scheme is used for time integration. For the high-order 

extension, we adopt the MUSCL scheme with the MINMOD limiter. The MUSCL scheme is 

applied to the characteristic function (11), and the characteristic functions (16) are then 

updated with time. The CFL number is set to be 0.2.  

4.1 Passive transport of three materials 

 
Figure 1: The passive transport problem statement. 

 

As shown in Fig. 1, the computational domain is a square with edges 1.0m long. Three 
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materials are initially located in the domains Ω1, Ω3, Ω3, respectively. These materials are 

characterized by the ideal gas EOS, the stiffened gas EOS and the Van der Waals EOS, 

respectively. The parameters of the EOSs [14] are shown in Table 1. 

 

Table 1: Material properties for the passive transport problem. 

Material γ a (Pa·m
6
/kg) b (m

3
/kg) π (Pa) 

Ideal gas 1.400 0 0
 

0 

Stiffened gas 4.400 0 0
 

6.000×10
8
 

Van der Waals gas 1.300 5 10
-3 

6.000×10
8
 

 

The center of the circle is initially located at the point (0.25m, 0.25m), and the radius of the 

circle is 0.20m. At the points A, B, C, three materials come into contact. Three materials are 

passively transported by the velocity u = (1000 m/s, 1000 m/s). Constant boundary conditions 

are imposed on the left and lower boundaries, and transmissive boundary conditions are 

imposed on the right and upper boundaries. 

The initial conditions are given as 

1 2 3 1 2

3 3 3 5 6 7

1

3 3 3 5 7 6

2

3 3 3 5 7 7

3

1.29 10 50 10 10 10 1 10 5 10 , ,

= 1.29 10 50 10 10 10 5 10 1 10 , ,

1.29 10 50 10 10 10 5 10 5 10 , ,

u v P z z

x

x

x

                              (13) 

where 1 2,z z  stand for the volume fractions of the ideal gas material and the stiffened gas 

material, respectively.  

After 500μs we obtain the numerical results shown in Fig. 2. It can be seen that the 

distribution of the materials are well maintained after advection. Some smearing of the 

material interface can be observed. This defect can be suppressed with various interface 

sharpening techniques. This issue will be tackled in a separate paper.  
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Figure 2: Distribution of the variable Z=∑3k=1kzk . 

 

To check the well-balancing property of the method, we also include the plots of the 

magnitude of errors in pressure and velocity in Fig. 3. We see that the difference between 

approximate and exact solutions are of the order 10-6 and 10-11, respectively, which means 

that the pressure and velocity equilibrium is well maintained.  

 

 
Figure 3: Evolution of maximum errors in pressure and velocity with time. 

 

4.2 Richtmyer-Meshkov instability 

This test is taken from [13]. The computational domain has a rectangular shape (see Fig. 

4). The domain Ω1 is filled with the dense gas SF6 (sulphur hexafluoride), and the domain Ω2 

with air. The gases are in equilibrium at the beginning. A shock wave enters into the 

computational domain from the left boundary. On the other boundaries reflective boundary 

conditions are imposed. The shock wave travels through the SF6 block, and then reflects on 

the right boundary. The leftward reflected shock wave hits the block again and travels through 

it. Due to the interaction with the shock wave, the SF6 block loses its initial rectangular shape 
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and undergoes strong deformation.  

Although the experiment in [13] only involves two domains and two materials, we will 

assume existance of a third domain Ω3 on the left to the domain Ω2, as illustrated in Fig. 4. 

The domain Ω3 is filled with a material whose thermodynamic parameters are identical with 

air and the state vector is the same as that assigned at the left boundary LB. This problem 

statement has no impact on the numerical results, since the left boundary condition remains 

unchanged. However, the problem in this case can be treated as a three-material problem. 

 

 

Figure 4: Configuration for the problem of shock/SF6 block simulations. 

 

Both air and SF6 are characterized as perfect gases with adiabatic coefficients γair=1.400 

and γSF6=1.076, respectively. The initial conditions are given as follows: 

1 2 3 1 2

7 6

1

7 7

2

6 7

1.667 5.805 1.153 0 0 96856.0 5 10 1 10 , ,

= 1.667 5.805 1.153 0 0 96856.0 5 10 5 10 , ,

1.667 5.805 1.153 133.273 0 163256.0 1 10 5 10 , ,

u v P z z

x

x

x LB

 

where LB denotes the left boundary, and volume fractions z1 and z2 represent the fictitious 

material in domain Ω3 and SF6, respectively. 

The numerical results are compared with the experimental images in Fig. 5. A very good 

agreement can be observed. From the numerical Schlieren image in the third column, one can 

see the interaction between the shock and the SF6 block, the transmission and reflection of the 

shock waves. We further provide a more close comparison between experimental images and 

numerical Schlieren images in Fig. 6. The x- and y-extent distributions of the SF6 block are in 

good agreement with the experimental results. Moreover, the distribution of volume fraction 

z1 and z2 are displayed in Fig. 7 and Fig. 8, respectively.  
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Figure 5: Comparison between experimental images (left column: laser-sheet frames) and numerically 

generated images (second column: density distribution, third column: numerical Schlieren image). Times 

displayed are (a) 206, (b)446, (c)926, (d)1726, (e)2046, (f)2846μs. 

 

Figure 6: Comparison between experimental images and numerical Schlieren images at two times (d)1726 and 

(f)2846μs 
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Figure 7: Evolution of the volume fraction z1. 
 

 
 

Figure 8: Evolution of the volume fraction z2. 

5 CONCLUSIONS 

A numerical approach have been considered for modeling heterogeneous media composed of 

multiple compressible materials with different physical properties. The physical model was  based 

on the single-velocity assumption, and the governing equations represent mass conservation for 

each component, conservation of the total momentum and energy, and advection of N-1 

characteristic functions that depend on volume fractions of N components. The isobaric 

assumption was used to close the model equations. Main inferences that can be made from this 

study are as follows. 

- Special advection functions for updating and special advection functions for 

reconstruction of volume fractions have been suggested, for which higher-order 

schemes and sharpening techniques can be implemented without introducing spurious 

oscillations in numerical solutions and violation of the well-balancing property of the 

scheme.  
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- Numerical results demonstrate the efficiency and accuracy of the proposed numerical 

method and computational algorithm.  

- The future work can be seen related to the development of the considered method by 

adding the phase transition process and engineering applications.  
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