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Abstract. Uncertain structural analysis is the computation of uncertain structural re-
sponse for uncertain input quantities, based on a computational model ξ. If only rare data
is available, the usage of the uncertainty model fuzziness is common. The computation of
fuzzy responses with respect to predefined fuzzy inputs is called fuzzy analysis. In terms
of structural analysis, four kinds of dependencies are identified.
Firstly, the input parameters xf , i.e. material characteristics or loading conditions, may
vary with time τ and/or space θ. This feature is called functional input dependency
x(τ, θ) and could be described by fuzzy processes or fuzzy fields.

Secondly, the set of input parameters xf can be internally dependent, which means not
all combinations of parameter values are permissible with regard to the computational
model. This pre-condition is the prior dependency, which mainly depends on the definition
of the multi-dimensional membership function µ(x). For random variables, the term
correlation is established in this context.

Thirdly, the result quantities (e.g. stresses, strains, damages, ...) are time and spatially
dependent as well. This functional output dependency z(τ, θ) is always given, if the finite
element method is used as fundamental solution and the results are not reduced to a small
amount of Quantities of Interest.

Fourthly, the result parameters zf can be internally dependent, called posterior depen-
dency. This fact is commonly ignored, because fuzzy result quantities are computed for
separated deterministic results. For instance, stresses µ(z1 = σ) and strains µ(z2 = ε)
(at one point in space and same time) are computed independently, which subsequently
yields a significant overestimation of uncertainty, since for most of undamaged elastic
solid materials high stresses come alone at high strains. The challenge is to compute the
membership function, which depends on a vector of result quantities µ(z).

The goal of this contribution is to discuss the different kinds of dependencies and
present possible solution strategies.
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1 INTRODUCTION

Uncertainty Numerical analysis enables the simulation of the reality based on physical
models. The simulation model represents the physical behaviour of a structure or a pro-
cess at specific boundary conditions and various parameters representing the properties
of the observed phenomena. These parameters can be distinguished in resistance (yield
stresses, friction coefficients, ...) and actions (external forces, support, ...) parameters.
The identification of deterministic values for these parameters is challenging or even not
possible, because of uncertainty. Uncertainty has various reasons, the main reason is
the inherent variability of material parameters and natural variability of loadings (e.g.
wind, snow). Due to limitations in observing and evaluating this variability, the un-
certainty characteristics imprecision and incompleteness exist [2]. These characteristics
are classified into aleatoric (variability) and epistemic (imprecision and incompleteness)
uncertainty.

The involvement of uncertainty into structural analysis results in an uncertainty model,
beside the existing deterministic simulation model, whereas the uncertainty model de-
scribes the uncertainty of the simulation model parameter based on existing data and
information with validatable assumptions. Therefore, various numerical models are de-
veloped. Aleatoric uncertainty is mainly modelled by random variables and epistemic
uncertainty is considered by interval or fuzzy numbers [13]. These models are the basis
for many advanced models within the context of imprecise probability (e.g. p-boxes and
fuzzy randomness) [2]. In this contribution, the uncertainty model fuzziness is addressed.

Fuzzy variable A normalized fuzzy variable Af is the gradual assessment of a crisp set
within the interval [0, 1] indicated by the superscript �f (alternatively �̃). A membership
function defines the fuzzy variable as mapping µ : R→ [0, 1]. The normalisation condition:
∃x | µ(x) = 1 needs to be fulfilled. Due to numerical aspects, the fuzzy variable is
separated into α-levels. Another representation of a fuzzy variable is the introduction of
α-levels Af

α = {x ∈ R | µAf (x) ≥ α}, α ∈ (0, 1]. Each Af
α is an interval Af

α ⊆ R, Af
α =

[xα,l, xα,r].

Fuzzy analysis The fuzzy analysis is the computation of nz fuzzy result quantities zf

for nx predefined fuzzy input variables xf utilizing a mapping

ξf : F(R, [0, 1])→ F(R, [0, 1]) : xf 7→ zf . (1)

The result membership function µj(zj) – defining the fuzzy result quantity – can be found
by an α-level optimisation by computing the minimum (left bound) zαk,left and maximum
(right bound) zαk,right value on a discrete number of α-levels nα with α ∈ (0, 1]. The
bounds are computed by solving two optimisation problems for each α-level and for each
result zj

zj,αk,left = ξ(x)→ min | x ∈ Xα and zj,αk,right = ξ(x)→ max | x ∈ Xα. (2)
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To solve the nopt = 2 · nα · nz optimisation tasks, various optimisation algorithms can
be applied. The efficiency as well as accuracy of the fuzzy analysis depends only on the
efficiency of the optimisation algorithms. The input space

Xα = {x | x ∈ Rnx ∧ µKf (x) ≥ α} (3)

for the optimisation is defined on the basis of the α-level cut of the Cartesian product
K f =

(
xf1 × xf2 × . . .× xfi × . . .× xfnx

)
of the fuzzy input quantities. If independence

between the input variables is assumed [12], the multidimensional membership function
µKf : Rnx → [0, 1] can be defined as

µKf : (x1, x2, . . . , xi, . . . , xnx) 7→ min
(
µxf1(x1), µxf2(x2), . . . , µxfi(xi), . . . , µxfnx (xnx)

)
. (4)

Dependencies An extension of Eq. (1) indicates four types of dependencies

ξf : F(R, [0, 1])→ F(R, [0, 1]) : xf︸︷︷︸
prior dependency

functional dependency︷ ︸︸ ︷
(τ, θ) 7→ zf︸︷︷︸

posterior dependency

functional dependency︷ ︸︸ ︷
(τ, θ) . (5)

The prior dependency describes the inherent relations of the fuzzy input variables xf

and can be interpreted as counterpart of correlation in terms of random variables. The
extension of the input variables for consideration of time τ ∈ R and spatially θ ∈ R3

dependent characteristics yields the functional input dependency xf(τ, θ). This aspect is
used to model uncertain processes (e.g. time dependent loading), uncertain fields (e.g.
spatially dependent material characteristics) or combinations (e.g. time dependent wind
field).

For the result variables zf , the posterior dependency describes the inherent relations
of the results. This characteristic is usually not considered in fuzzy analysis, because
the fuzzy result quantities are computed on the basis of α-level optimisation, separately
for each result quantity zfj, see Eq. (2). Furthermore, the functional output dependency
zf(τ, θ) is applicable if time and spatially dependent fuzzy result quantities (stress or
damage fields) are computed by e.g. finite element analysis.

The functional dependencies are discussed firstly, followed by the prior dependency. A
detailed explanation of the posterior dependency is given and a new numerical approach on
the basis of multiobjective optimisation is proposed. Two examples show the applicability
and necessity of advanced fuzzy analysis methods.

2 FUNCTIONAL INPUT DEPENDENCY

To consider functional input dependency in context of random variables, various meth-
ods for random processes and random fields exist. For the fuzzy analysis, only few method
are available. A fuzzy field defines a fuzzy quantity at each point in space T f : R3 → F(R),
a one-dimensional example (θ1 ∈ R) is depicted in Fig. 1. The fuzzy field can be devel-
oped by a finite series expansion as T f(θ) =

∑n
p=1 c

f
p ·φp(θ). The basis functions φp(θ) can

be modelled as radial basis functions [8] or on the basis of a modified Karhunen-Love
expansion using the eigenvectors of an interaction matrix, see [6], [1].
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deterministic
simulation model

-level optimisation

Figure 1: One-dimensional fuzzy field Figure 2: Prior dependency of two
fuzzy input quantities

3 FUNCTIONAL OUTPUT DEPENDENCY

As indicated in Eq. (1), the fuzzy results vector zf can be independent of time and
space. Examples therefore are general parameters such as mass of a system or overall
values as maximum displacement or damage. But in general, the results of finite element
computations, e.g. stress or displacement fields, are time and spatially dependent. The
dependency structure can be found on the basis of the spatial finite element discretization
and the time steps. The aspect of functional output dependency is to compute the fuzzy
result quantities with respect to these relationships zf(τ, θ). This means, for each node
in a finite element mesh nnode and for each time step ntime, the amount of nz fuzzy result
quantities needs to be computed. It is obvious, that the large amount of fuzzy result
quantities (nfuzzy analysis = nnode · ntime · nz) cannot be handled by the α-level optimisation
approach, see Eq. (2). To overcome this problem, an enhanced fuzzy structural analysis is
proposed in [7]. The main idea is to separate the point sampling and the fuzzy analysis,
such that the feedback loop within the optimisation algorithm is not existing. The sam-
pling points have to be placed in all α-level cuts Xα separately. Otherwise, the quality of
the resulting membership function would decrease for higher α-levels, due to the curse of
dimensionality. The proposed method allows the computation of a large amount of fuzzy
result quantities in an approximative way.

The resulting fuzzy quantities for each time step and at each point in space are shown
in Fig. 3. It is obvious, that the visualisation possibilities are limited. Therefore, informa-
tion reduction measures (also called defuzzification) can be applied, whereas information
reduction is the real valued representation of a fuzzy quantity Rf : F(R, [0, 1]) → R. It
is necessary to distinguish between characteristic measures, such as the centroid value
and uncertainty-quantifying measures such as the area of the membership function. This
classification is highly important. Both types are necessary for a holistic evaluation of the
uncertain results.
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Figure 3: Discrete fuzzy stress field (σ1) for two time steps

4 PRIOR DEPENDENCY

The main characteristic of Xα according to Eq. (3) is the independence of all param-
eters, i.e. each parameter can be selected without the knowledge of the others. Prior
dependencies are inherent constraints/relations in the fuzzy input vector xf . Conceivable
cases are, physically infeasible combinations, e.g. low/high concrete Youngs modulus
comes always along with the pendant of compression strength. The combinations of low
Youngs modulus and high compression strength is infeasible. Another reason becomes
obvious, if the parameter of the simulation model are identified by uncertain parameter
identification methods. These methods result in a set of good fitting parameter combi-
nations and non applicable sub-domains. The independent modelling of each parameter
would yield to wrong results.

The question arises, what is the multidimensional membership function µ(x) if the
assumed independence in Eq. (4) cannot be hold. In [10] the prior dependency structure
is formulated on the basis of a t-norm which is similar to the copula approach in probability
theory. Here, a simpler approach is described, based on a confined α-Level domain Xα,
see [9]. The interaction of fuzzy quantities can be observed by a constrained input space
X+
α . The unconstrained input space Eq. (3) changes to

X+
α = {x | x ∈ Rnx

∧
µKf (x) ≥ α

∧
hi,αh

(x) > 0 | αh ≤ α ∀ i ∈ {0, . . . , nh} (6)

considering nh inequalities hi,αh
(x). These inequalities define, whether a deterministic

input vector may be possible or impossible. The subscript αh indicates, that the def-
inition of permissibility can be defined independently for each α-level, which yields to
non-continuous membership functions. This definition is equal to the extension of Eq. (4)
– assuming the independence of input quantities – using a multidimensional definition of
µ(x), which is not only based on the one-dimensional membership functions µi(xi) [12].

In Fig. 2, two linear constraints in a two-dimensional input space are shown. The
definition can be applied on the basis of the α-level discretization.
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5 POSTERIOR DEPENDENCY

The fuzzy analysis described in Section 1 is based on α-level optimisation, such that for
each result quantity zfj the optimisation tasks according to Eq. (2) have to be executed.
The resulting multidimensional membership µ(z) is a posteriori assembled in the same
manner as shown in Eq. (4), based on the one-dimensional results µj(zj). The assumed
independence of the results can be seen in Fig. 4a) as rectangular result domains.

The direct computation of µ(z) is discussed in [10]. The availability of the dependency
between the results zf1, z

f
j and zfnz

is shown in Fig. 4b). The existing computation methods
are based on a convex hull concept for multivariate interval uncertainty [5], [4] and a
sampling approach with adaptive decomposition of the output space [10].

a) Multidimensional membership function
assuming independent results

b) Multidimensional membership function
considering posterior dependency

Figure 4: Examples for two-dimensional fuzzy result quantities

Here, another method for computing the multidimensional membership function is
proposed. The formulation is based on multiobjective optimisation tasks. Thus, the
membership function is indicated by the relation to an α-level domain of result quantities

µ(z) = minα | z ∈ Zα. (7)

Therefore, a resulting point set, based on the union of the Pareto-Frontiers P i,α

Zα =

nPareto⋃
i=1

P i,α, (8)

is the basis for a continuous domain Zα. This domain is defined as polytope (multidi-
mensional polygon) of the point set Zα = polytope(Zα). If the number of results in
a Pareto-Front is #{P i,α} = 1, the multiobjective optimisation is equal to the single
objective optimisation result (i.e. no conflicting objectives). The maximum number of
Pareto-Frontiers is nPareto = 2nz . The Pareto-Frontiers for two-dimensions are the
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solutions of the nPareto = 4 multiobjective optimisation tasks

P1,α = min
Xα

(+z1,+z2) , P2,α = min
Xα

(+z1,−z2) ,

P3,α = min
Xα

(−z1,−z2) and P4,α = min
Xα

(−z1,+z2) ,
(9)

as can be seen in Fig. 5. The positive results +z and the negative results −z are related
to a minimum or maximum task, respectively. The multiobjective optimisations can be
solved by e.g. the ‘NSGA-II’ algorithm [3].

Figure 5: Pareto-Frontiers for a two-dimensional result quantity.

6 EXAMPLES

6.1 Uncertain pavement simulation

Model description and uncertainty modelling In this example, the influence of un-
known environmental conditions and varying loading scenarios to an asphalt structure is
observed. The numerical model includes the material modelling of asphalt, the discretiza-
tion of a truck tyre and the consideration of a interface layer between these systems [11].
The asphalt material parameters are identified on the basis of 30 cyclic triaxial material
tests with different loading conditions. The identification of the six material parameters
was performed by the ‘minimum root mean square error’ method, separately for each
sample. In Fig. 6, the identified material parameters are shown as scatter plot.

Due to the unknown loading conditions – especially frequencies – uncertainty modelling
provides the basis for a generalized material description. Therefore, uncertainty exists due
to the unknown loading conditions. This kind of uncertainty can be modelled by fuzziness
sufficiently. In the following, two modelling scenarios are compared: without and with
prior dependencies of the fuzzy input quantities.

The modelling of the fuzzy material parameters is shown in Fig. 6. The definition of the
membership functions (blue colour) is derived from the histogram and expert knowledge
gained on further investigations. The second modelling scenario considers 16 linear con-
straints hi (see Eq. (6)), containing parameter combinations, which cannot be physically
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motivated. The definition of hi is done on the basis of two input variables each identified
by the scatter plot. The resulting non-permissible parameter combinations are marked in
Fig. 6 by red colour. The constraints is applied to all α-levels.
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Figure 6: Scatter plot of the identified material parameters (including histograms) and
modelling of fuzzy input quantities (including interaction)

Uncertainty analysis and results The analysis is carried out by the method proposed
in Section 3. The fuzzy sampling scheme was applied for four α-levels α ∈ {0, 0.5, 0.75, 1}
by in total nsim = 1680 simulations. The computation of the relevant fuzzy result stresses
σf
x,y,z needs the computation of 38250 fuzzy quantities. In the following, the evaluation of

these results is carried out for the region of high significance to the pavement subsystem
(below the tyre contact area). The relevant parameter is the stress σf

x. The visualization
of spatially dependent fuzzy result quantities requires information reducing measures.
The entire evaluation of the uncertain structural response needs both, representative and
uncertainty characterising measures. In Fig. 7, these results are shown for both modelling
scenarios.

It can be seen, that the centroid values (Fig. 7a) and Fig. 7b)) can be interpreted as
equivalent to a deterministic solution. The highest stresses are observed at the surface
layer and at the bottom of the asphalt base layer, which stands for the characteristic
bending like behaviour.

The area value (Fig. 7c) and Fig. 7d)) indicates areas of high and low uncertainty,
which is the main benefit of an uncertainty analysis. Noticeable is the large gradient
within the top surface in the tyre contact area. This phenomenon is not recognizable
without uncertainty analysis. Furthermore, it can be seen, that the centroidal and the
area value are independent.

The comparison of the two modelling scenarios shows, that there is no influence of
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the consideration of the parameter interaction with respect to the centroidal value, see
(Fig. 7a) and Fig. 7b)). A difference can be seen for the area value in (Fig. 7c) and
Fig. 7d)). Mainly, the uncertainty of the stress σx decreases, if parameter interaction is
considered. In other words, if a non-physical parameter combination is considered during
the fuzzy analysis (modelling scenario 1), the uncertainty of the results is overestimated.

a) Centroidal value (without interaction) b) Centroidal value (including interaction)

c) Area value (without interaction) d) Area value (including interaction)

Figure 7: Comparison on fuzzy results σf
x

6.2 Demonstrative example for posterior dependency

In this example, the relevance for considering posterior dependency, see Section 5, is
demonstrated on the basis of a test example proposed in [10]. The observed model is a
complex eigenvalue problem of a synthetic dynamical system: | A(pf) − λf · I |= 0 with
the system matrix

A(pf) =

(
0 I

−a1(p
f
1, p

f
2) −a2(p

f
1, p

f
2, p

f
3)

)
(10)
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including the components

a1 =
1

2

pf1
pf2
·
(

2 −1
−1 2

)
and a2 =

3

4

pf2
pf1
·
(

1 0
0 1

)
+ pf3 ·

(
1 1
1 1

)
− pf2 · pf3 ·

(
0 1
0 0

)
. (11)

The uncertain parameters are the three fuzzy triangular variables

pf1 = 〈0.85, 1.0, 1.15〉, pf2 = 〈0.85, 1.0, 1.15〉 and pf3 = 〈−0.1, 0.0, 0.1〉. (12)

The computation of two-dimensional fuzzy result quantities is done with three different
methods, whereby the pairs of real and imaginary part of the first two eigenvalues are
considered, thus µ(real(λ1), imag(λ1)) and µ(real(λ2), imag(λ2)) are computed.

The results of a sampling-based approach (with 2000 samples per α-level) are depicted
in Figs. 8a) and 9a). Additionally, the results of the convex hull, computed by the ‘Qhull’
algorithm, are shown. The two two-dimensional membership functions are visualized by
coloured membership areas. It can be seen, that with the convex hull approach non-
convex bounds of the membership function cannot be identified precisely. Furthermore,
the sparsely distributed points indicate regions of high-sensitivity, such that the results
are not fully trustable.

The third results are computed by the proposed multiobjective optimisation approach.
The four membership bounds are computed for each α-level and for both membership
functions. The optimization tasks were solved by the ‘NSGA-II’ algorithm [3] using a
population size of 200 within 25 generations. In Figs. 8b) and 9b) these results are given.
It has to be remarked, that the real Pareto results (point set) are interpolated for the
continuous representation. To compare the results with the sampling approach α = 0 is
selected, see Figs. 8c) and 9c). It can be seen, that the regions of sparse point density
are clearly surrounded by the Pareto frontiers. Another noticeable result is, that the
Pareto frontiers P1,3 (according to Fig. 5) containing one point only and are not relevant
for this result.

It can be seen, that the computation of multidimensional fuzzy results is highly im-
portant to evaluate the influence of result quantities. By neglecting these posterior de-
pendencies, the strong overestimation of uncertainty leads to unrealistic results.

7 CONCLUSIONS

In this contribution dependencies within fuzzy analysis are addresses. The four types
of dependency are described and numerical approaches are given. Functional input depen-
dencies can be handled by time dependent fuzzy processes or spatially dependent fuzzy
fields. Prior dependency describes the relations within the fuzzy input vector, e.g. due
to non-physical domains and can be considered by confined α-level domains. If indepen-
dence is assumed, the uncertainty is overestimated. For result quantities, the functional
output dependency allows the computation of time dependent fuzzy result fields, e.g. in
the context of finite element analysis. This ability for evaluating the uncertain results in
the same manner as the deterministic pendant (time-dependent 3D visualisation) is highly
beneficial. An additional advantage is, that no a priori identification of any quantity of
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interest (QoI) is necessary. For the posteriori dependency a new algorithm is proposed,
by multiple solving of multiobjective optimisation tasks. This optimisation based method
enables identifying dependencies within the fuzzy results, such that the overestimation of
uncertainty is limited.

The advanced consideration of dependencies within fuzzy analysis yields more realistic
results, due to a reduced overestimation of uncertainty. Furthermore, the additionally
gathered information can be used to increase the understanding of the simulation and
uncertainty models by a more comprehensive discussion of the uncertain results.

a) Convex-Hull approach b) Multiobjective optimisation c) Comparison for α = 0

Figure 8: Two-dimensional fuzzy result for λ1 discretised to five α-level

a) Convex-Hull approach b) Multiobjective optimisation c) Comparison for α = 0

Figure 9: Two-dimensional fuzzy result for λ2 discretised to five α-level

Acknowledgement

The authors gratefully acknowledge the financial support by the Deutsche Forschungs-
gemeinschaft (DFG) under the grants GR 1504/9 and KA 1163/34. Furthermore, the
support of DFG priority program SPP 1886 – polymorphic uncertainty modelling for the
numerical design of structures – is acknowledged.

11
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