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Abstract.We consider modelling gas-solid granular mixture flow in a wide range of solid 

volume fractions. In such flows, concentration of the solid phase changes from dilute (low 

concentration) to dense (high concentration). Several macroscopic phenomenological models 

have been developed for gas-solid granular medium. The 6-wave 7-equation Baer-Nunziato 

model (BN) has been designed for gas-solid granular mixtures with dense concentration of the 

solid phase. Dilute mixtures are commonly modeled with the one-pressure model that is not 

hyperbolic in the whole range of model parameters. In the paper we are concerned with the 

problem of combaining the two models. We develop a new model of two-phase compressible 

flows which is hyperbolic and thermodynamically consistent and covers a wide range of solid 

phase concentrations in an unique approach. We tets the proposed model on several problems 

where the flow regime is changed from dilute to highly packed mixtures. The numerical 

calculations are carried out with moving adaptive Eulerian grids. The Godunov method is 

used with approximation of the non-conservative numerical flux with the HLLEM method. 

1 INTRODUCTION 

Nowadays, there are several phenomenological mechanical models developed for 

simulating compressible two-phase flows. Among them the 6-wave 7-equation Baer-Nunziato 

model (BN) [1] has been designed for gas-solid granular mixtures with dense concentration of 

the solid phase. This model is hyperbolic and has 6 characteristic velocities which represent 

material velocities and also plus/minus acoustic velocities in each phase. For dilute flow 

regimes where the volume fraction of solid phase is small, the one-pressure model [2-4] is 

employed. However, the one-pressure model is not hyperbolic in the whole range of model 

parameters and deteriorates as the concentration of solid granules increases. 

    Modeling two-phase flows is closely related to the notation of phase connectivity. For 

example, in the BN model both the solid and the gas phase are treated as connected and 

perturbations can propagate in each of the phases. On the other hand, in the model [4] only the 

gas phase is connected; the solid phase is considered as the number of non-connected dilute 

granules, and acoustic wave should not exist in this phase.  
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    Phase connectivity for flows of gas-solid mixtures can be treated depending on the local 

value of phase volume fraction. For high concentrations of the solid phase, particles form the 

connected close-bed structure. For low concentrations, solid particles are rarefied in gas and 

do not interact each other. Therefore, one can suggest a simple criteria to distinguish phase 

connectivity: if the solid volume fraction is less than a critical value *  than the solid phase 

is not connected, and the model of [4], or the Marble model [5] can be implemented. 

Otherwise, the solid phase is treated as connected, and the BN model is applied. However, 

realization of this approach is not trivial as the merging models have different number of 

equations and use different closure relations. 

    The absence of a general model that can describe the whole range of two-phase granular 

flow regimes is discussed in [6]. In this paper, an alternative approach to the BN model with 

improved acoustic properties is proposed. However, the thermodynamic consistency for this 

model is proven only for the stiff pressure relaxation limit. Once we admit the model derived 

from this limit, the entropy condition will be held, but the conservation of total energy will 

not because the limit model equations are derived from the internal energy equations. To 

remove this defect, authors of [6] suggest to replace one internal energy equation with the 

equation for total mixture energy conservation. However, in this case the entropy condition 

will be violated. 

   A thermodynamically consistent hyperbolic model is proposed in [7] based on the 

generalization of the BN model. This is a 6-wave model with the linear approximation of the 

interfacial pressure and velocity. As the BN model, the model [7] covers only one case of 

phase connectivity when the both phases are connected.  

    In the present paper we develop an approach alternative to the models [6] and [7]. It is 

based on the conservation laws for the phases. The model is hyperbolic and satisfies the 

entropy inequality. The model covers all cases of the phase connectivity in a unique approach. 

Moreover, the proposed approach allows constructing smooth transition between different 

cases of phase connectivity without losing the properties of hyperbolicity and 

thermodynamical consistency. The model is applicable for simulating flows with change in 

phase connectivity.  

    In Section 2, we give a general framework of the model to be considered. Next we consider 

phasic entropy equations and derive a closure relation for the solid volume fraction that 

ensures the mixture entropy inequality to be held. Finally we show results of some test 

calculations which demonstrate capability of the method to calculate two-phase transitional 

flows with change in phase connectivity.  

2 BASIC PRINCIPLES OF THE MATHEMATICAL MODEL 

We employ the phenomenological approach to model two-phase dispersed flow problems. 

The phases (mixture components) are indicated by the subscript 1 and 2. Each phase is 

characterized by volume fraction  , material density 0 , average density 0  , pressure 

p , internal energy e , velocity vector u . The general system of equations that represents 

conservation laws for mass, momentum, and total energy of the mixture components is 

written in the following form: 
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 where 20.5E e  u  is the total energy,   is the stress tensor representing surface forces 

acting on the phase, c  is the vork done by the surface forces, ijm , ijP , and ijE  are mass, 

momentum, and energy exchange terms (the quantity  transfering from i to j component), f  

and q  are external volumetric force and heat flux, respectively, Q  is the energy released due 

to mass transfering. The exchange terms satisfy the conservation relations,  

02112 mm ,  02112  PP ,  02112  EE                                          (2)    

For simplicity we will assume in what follows that ijm 0 , and also i i iq Q 0  f . 

    The surface force acting on the phase across a surface element 1 2dS dS dS   is 

represented in terms of two tensors: 

 0 0
i i i ji j i i j jidS dS dS dS           

where 
0
i  is the phasial stress, and  ij  is the interphasial stress which must satisfy the 

following consistency condition: 

0212121                                                                             (3) 

   The term ijP  in (1) represents the volumetric exchange of momentum between the phases. 

To model the energy exchange terms, we introduce an additional vector parameter *v which 

defines the characteristic interface velocity so that  

  ijijij qE  *,vP                                                                             (4) 

with ijq  being the heat transfer flux from the i to j phase, 12 21q q 0  . The work of surface 

forces can be then written as 

*
0

vu ijjiiiic                                                                          (5) 

   Introducing the material derivative for each phase,    

                                                      ii
i

i
t




 



 ,u  

and taking into account the above notations, the system of equations (1) can be recast in the 

following form:  

                                0 0 0
i i i i i i i 0        u  

 0
i i i i j ji ji       u P                                                                                       (6) 

                                             * * *, , , ,0
i i j i i i j ji j ji ji i jie q               u v u v P v u  

We assume the hydrodynamic approximation and take the phasial stress tensor in the 

diagonal form, 0
i ip   I . Next step in constructing the model is very important. So far the 

model has been symmetrical, the phases have been equivalent, and we could invariantly  

change the indexes 1 and 2 in the equations (2). Now we want to distinguish the phases 

assuming that one of them consists of small dispersed non-connecting inclusions (granules). 
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Let, for example, the subscript i=2 indicate this dispersed phase. Then we can introduce 

another additional parameter *P  which will define the characteristic interphasial pressure so 

that    

IP*21  ,       *12 2 P    P f                                                              (7) 

where ( )1 2K  f u u  is the viscous force between the phases (viscous friction), and K is a 

positive parameter ( K 0 ). 

 In terms of the interphasial pressure, the phasial momentum equations are written in the 

form 
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and the internal energy equations take the form 
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Phasial densities, pressures, and internal energies are supposed to be in functional 

dependency by means of appropriate equations of state describing thermodynamical 

properties of materials, 0( , )i i i ie e p . The considered system of governing equations (the first 

equation in (6), (8), and (9)) is not closed. For its closure, we need to define interphase 

parameters *v  and *P , and also derive an additional equation to qualify the evolution of the 

volume fraction. With this purpose, we proceed to the analysis of mixture entropy that may 

give us a clue to how these closure issues should be settled.       

3 ANALYSIS OF ENTROPY EQUATIONS 

By using the fundamental thermodynamical relation that relates variations in entropy, 

specific volume, end internal energy, 2/Ts e p   , where T is the temperature and s is the 

specific entropy, one can derive phasial entropy equations as consequence of the above 

conservation laws, 

   1 1 1 1 1 2 * * * 1 * * 1 * 2, ,T s P P P          v v u f v u                                                   (10) 

                           2 2 2 2 2 2 * * * 2 * * 2 * 2, ,T s P P P          v v u f v u   

These two equations define the change in time of the total entropy of the mixture,  

   

2 1 2 2 * 1 *
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which must be non-negative thanks to the second law of thermodynamics, 02211  ss   . 

   To meet this condition, we first define the interphasial velocity to be an average between 

phasial velocities, * 1 2(1 )   v u u , where   is the weight coefficient, 0 1  . Such a 

closure relation will ensure positivity of the last term in the r.-h.s. of (11). Then, to assure the 

entropy inequality, we require other terms in the r.-h.s. of (11) to vanish, i.e., 

 2 *

2 * 2 *

1
0

P PP
P

T t T T


 

     
            

u v                                                (12) 
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where the square brackets denote the difference between phasial parameters,      12  .  

Eq. (12) is considered as the closure relation to the model developed  which defines how 

the volume fraction of the dispersed phase is evolving in space. It can be written as the 

advection equation for 2  with a source term, 

                                                        2

2 2 *J
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Thus, the system of governing equations for modeling two-phase compressible dispersed 

flows is given by two mass conservation equations of (6), momentum equations (8), energy 

equations (9), and volume fraction equation (13). Further qualification of this model is based 

on the analysis of eigenvalues for the matrix of this system. In order for the model developed 

to be evolutionary, the system of governing equations has to be hyperbolic, i.e. it has to 

possess a set of real eigenvalues. Full analysis of eigenvalues of the model for arbitrary 

interphasial velocity and pressure is out of scope of the presented paper. We are concerned 

here with only simple choice  * 2v u  and * 1P p . With this choice, the advection velocity in 

Eq.(13)  2J u u , and the parameter  1   when the phasial pressures are near to equilibrium, 

1 2p p . In this limit the equation for 2  in (13) takes the form of conservation law, and as 

consequence the density of the dispersed phase is kept constant. This situation relates to the 

regime of dilute flow.  

4 NUMERICAL RESULTS 

In this section, we consider application of the proposed model to simulation of dense-to-

dilute gas-solid flows. We employ the second order Godunov-type method with uniform 

Euler grids. The HLLEM scheme is used to approximate the Riemann problem solution [8].  

The first problem to be considered is the interaction of a shock wave propagating in air 

with a semi-infinite cloud of small aluminum particles. Diameter of particles is 1 mkm. 

The problem can be formulated as a Riemann Problem. The calculation domain is an 

interval [ , ]0 10 cm . The grid consists of  1000 computational cells. Initial discontinuity is 

located at x 6cm . The initial data are: . /3 3
1 1 16 10 g cm   , . / 3

2 2 71 g cm  , 1 2u u 0  , 

1 2P P 1 bar  , 0
2 2   on the left from the initial discontinuity, and . /3 3

1 4 47 10 g cm   , 

/1u 772 m s  , .1P 10 334 bar , .1P 10 334 bar  on the right. We consider four cases of initial 

volume fraction 0
2  in the cloud: 0

2 =0.001, 0.01, 0.1, and 0.5.  

The ideal gas EOS for air is used with the adiabatic exponent .1 4  . For aluminum 

particles, the Mi-Gruneisen EOS is used: 
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with parameters: 3
20 /71.2 cmg , smC /533320  , 5.3n , 13.22  . 

   
Figure 1: Solid volume fraction, Pressure and Velocities distributions for the problem of shock wave interaction 

with aluminum dust cloud with initial dust volume fraction 0.001. 

 

 
Figure 2: Solid volume fraction, Pressure and Velocities distributions for the problem of shock wave interaction 

with aluminum dust cloud with initial dust volume fraction 0.01. 

 

 
Figure 3: Solid volume fraction, Pressure and Velocities distributions for the problem of shock wave interaction 

with aluminum dust cloud with initial dust volume fraction 0.1. 

 

 
Figure 4: Solid volume fraction, Pressure and Velocities distributions for the problem of shock wave interaction 

with aluminum dust cloud with initial dust volume fraction 0.5. 

 

    In Figs. 1 – 4 we show numerical distributions of solid volume fraction, pressure, gas 

and solid velocity at time moments from 0 to 120 µs with the step 20 µs for four cases of 
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initial volume fraction in the dust cloud. As can be seen from this results, in the case of low 

dust volume fraction (0.001, 0.01) (see Figs. 1 and 2), the transmitted into the cloud shock 

wave propagates with a clear front followed by the relaxation zone where pressure is further 

increased. Estimations show that the velocity of the leading front of the transmitted shock is 

well correlated with the Wood’s formulae. For time 60 µs, it propagates a distance 5.6 cm and 

3.7 cm for the case of volume fraction 0.001 and 0.01, respectively. This corresponds the 

front velocity 93.3 /m s  and 61.6 /m s .  

The front amplitude decreases while the region of relaxation increases as the initial volume 

fraction becomes larger. Fig. 3 shows results for .0
2 0 1  . Here we can’t distinguish the 

leading shock front; transmitted perturbation propagates in the dusty cloud with a lower 

velocity without any sharp front. The case of .0
2 0 5   is displayed in Fig. 4. It can be seen that 

in this case solid particles are compacted into the dense layered structure which further moves 

as a solid piston. 

The second problem is the piston problem in a dust gas. The velocity of the piston is 

10 /m s . The mixture consists of small aluminum particles and air. We consider four cases 

when the  initial volume fractions 0

2  equals to 0.001, 0.01, 0.1, and 0.5, respectively.  

Calculations are performed in the system of coordinates fixed with the piston.  The calculation 

domain is an interval [0,10]cm . The EOSs for air and solid particles are taken the same as in 

the Problem 1. 

 
Figure 5: Solid volume fraction, Pressure and Velocities distributions for the problem of piston impact on the 

aluminum dust cloud with initial dust volume fraction 0.001. 

 

 
Figure 6: Solid volume fraction, Pressure and Velocities distributions for the problem of piston impact on the 

aluminum dust cloud with initial dust volume fraction 0.01. 

 

In Figs.5-8 we show numerical distributions of solid volume fraction, pressure, gas, and 

solid velocity for several time moments from 0 to 500 µs with a step of 100 µs. The character 

of perturbation propagation is quite similar to that in previous calculations. When particles 

constitutes low fraction, the perturbation in the gas phase has the typical form of sharp shock 
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front with a region of relaxation. The amplitude of this front decreases with as the particle 

volume fraction becomes higher. The shock front velocity is estimated as 350 /m s . 

Perturbation in gas doesn’t exhibit any shock front when the piston moves in the dusty air 

with higher packing of particles, 0

2 0.1  , 0.5 . A compaction wave is formed so that particles 

make dense close-bed structure near the piston. This dense layer prevent any perturbations run 

ahead of the compaction front. The phase velocity are rapidly come to equilibrium, and the 

perturbation region looks as a compaction wave that moves with a velocity of 25 /m s  relative 

to the piston for the case considered.     

 
Figure 7: Solid volume fraction, Pressure and Velocities distributions for the problem of piston impact on the 

aluminum dust cloud with initial dust volume fraction 0.1. 

 

 
Figure 8:Solid volume fraction, Pressure and Velocities distributions for the problem of piston impact on the 

aluminum dust cloud with initial dust volume fraction 0.5. 

5 CONCLUSIONS 

- We have developed a new model for description of two-phase compressible dispersed 

(granular) flows that can be applied to the whole region of granular compositions, 

from dilute to dense packed. The model is based on basic conservation equations for 

mass, momentum, and energy. The closure relation for the volume fraction of the 

dispersed phase has been derived from the analysis of the mixture entropy equation.    

We test the proposed model on several problems where the flow regime is changed 

from dilute to highly packed mixtures.  

- The model proposed has been tested on two problems that involve shocked flows in 

the mixture of air and small aluminum particles with different dense-to-dilute particle 

compositions. The results obtained have shown capability of the method to solve 

two-phase compressible flow problems in the wide range of volume fractions.   
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