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Vicuña Mackenna 4860, Macul, Santiago, Chile

jspinto@uc.cl, cjerez@ing.puc.cl

Key words: Boundary integral equations, spectral methods, screens, disjoint domains,
matrix compression

Abstract. We present a spectral numerical scheme for solving Helmholtz and Laplace
problems with Dirichlet boundary conditions on an unbounded non-Lipschitz domain
R2\Γ, where Γ is a finite collection of open arcs. Through an indirect method, a first kind
formulation is derived whose variational form is discretized using weighted Chebyshev
polynomials. We show that our discretization basis allows for exponential convergence
under smoothness assumptions. We show how a simple preconditioner can be built with
successful results and introduce an efficient compression algorithm.

1 INTRODUCTION

We seek solutions of Helmholtz and Laplace equations in a two-dimensional plane
after removing a finite collection of open finite curves –also called arcs. Applications for
this problem can be found in various areas such as structural and mechanical engineering
[14, 15, 2, 3, 8]; antenna design and acoustic engineering [13, 18]; and, biomedical imaging
[1, 17]. Such problems pose the following challenges: (i) non-Lipschitz domains, for which
weak formulations do not follow directly from Green formulae; (ii) unbounded domains,
which call for boundary integral methods with carefully chosen radiation conditions; (iii)
singular behaviors of solutions near arcs’ end points; and, (iv) large number of degrees of
freedom when the frequency or number of arcs increase.

Theoretical considerations concerning the first two points are well addressed in various
contexts, in particular, we follow the approach presented in [5, 6]. Here, we show that we

can extend the results form Γ̂ := (−1, 1) × 0 to more general arcs. The last two points
deal with computational hindrances that can be addressed by employing spectral bases
–specifically weighted Chebyshev polynomials– incorporating singular behaviors near the
end points. The main objective of this work is prove that using this spectral basis we
obtain an efficient numerical method capable of dealing with large numbers of curves and
wavenumbers.
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Yet, one more challenge remains and it concerns how well we can solve the linear system
resulting of the discretization of the underlying boundary integral equations. Here, we
show that is possible to obtain an approximation for a second kind formulation with good
results and which enhanced by using the techniques described in [9, 4].

2 Problem Model

2.1 Notation

In what follows, the extended and non-negative integer values are denoted by N∗ :=
N ∪ {∞} and N0 := N ∪ {0}, respectively. Vectors are indicated by boldface symbols.
Euclidean norm is written ‖ · ‖2 with other norms indicated by subscripts. For k ∈ N0

and a non-empty set G, Ck(G), denotes the set of continuous functions along with their
k derivatives over G. Compactly supported Ck(G)-functions are denoted by Ck0 (G). The
class of all analytic functions will be denoted by C∞(G). Duality pairings are written as
〈·, ·〉 with subscripts indicating the domain of involved functional spaces, if it is not clear
from the context. Similarly, inner products are written as (·, ·), only requiring integration
domains as subscript.

2.2 Geometry

In order to describe the domain where the problem is defined we need to give a precise
description of what we understand for an open arc. We say that Λ ⊂ R2 is a regular
Jordan arc (that will be refered just as arc) of class Ck, k ∈ N∗, if there exists a bijective
Ck-parametrization denoted by r = (r1, r2), such that r : [−1, 1] → Λ ; r : (−1, 1) → Λ,
and ‖r′(t)‖2 > 0, ∀ t ∈ [−1, 1]. We will assume that we can complete any open arc by a
closed curve that keeps the same regularity.

Assumption 1. For any Λ regular Jordan arc of class Ck, there exists an extension of
Λ to Λ̃, with a Ck-parametrization r̃ : [0, 2π]→ Λ̃, that is bijective in [0, 2π) and satisfies
r̃(0) = r̃(2π) and ‖r̃′(t)‖2 > 0, for all t ∈ [0, 2π].

For a finite integer M , consider a collection of arcs {Γj}Mj=1 each one of class Ck,
for k ≥ 2. Denote by Γ :=

⋃M
i=1 Γi. For m ∈ N∗, we claim that Γ is of class Cm,

if the parametrizations ri : [−1, 1] → R2, i ∈ {1, . . . ,M} are component-wise of class
Cm((−1, 1)), where m =∞ is the analytic case.

We define our problem domain as

Ω := R2 \ Γ. (1)

We say a function g : [−1, 1] → C is analytic, if there exists a Bernstein ellipse of
parameter ρ > 1, such that g is analytic –in the complex variable context– in the ellipse
(cf. [16, Chapter 8]). For g = (g1, . . . , gM) such that gj : Γj → C, for j ∈ {1, . . . ,M},
we say that g is of class Cm(Γ), if gi ◦ ri ∈ Cm([−1, 1]), for i ∈ {1 . . .M}, and denote
g ∈ Cm(Γ).

For each Γj we denote by Ωj a bounded domain whose boundary contains Γj –by
Assumption 1, there is at least one of this domains for every j– and we assume than we
can select the collection {Ωj}Mj=1 as disjoint domains.

2
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Assumption 2. The domains {Ωi}Mi=1 are disjoint.

2.3 Functional spaces

Let G ⊆ Rd, d = 1, 2, be an open domain. For s ∈ R, we denote by Hs(G) the standard
Sobolev spaces ([12, Section 2.3]) and Hs

loc(G), their local integrable counterpart. As in
[5, Section 2.3], for any Lipschitz open arc Λ that can be extended to a closed curve Λ̃,

we define tilde spaces H̃s(Λ) as

H̃s(Λ) := {u ∈ D′(Λ) : ũ ∈ Hs(Λ̃)}, s > 0, (2)

where ũ denotes the extension by zero of u to Γ̃. For s > 0 we can identify

H̃−s(Λ) = (Hs(Λ))∗, and H−s(Λ) = (H̃s(Λ))∗. (3)

We will also need the family mean-zero Sobolev spaces:

H̃s
〈0〉(Λ) = {u ∈ H̃s(Λ) : 〈u, 1〉 = 0}. (4)

For the finite union of disjoint open arcs Γ, as in Section 2.2, we define the piecewise
spaces as

Hs(Γ) := {u ∈ D∗(Γ) : u|Γi
∈ Hs(Γi), i = 1 . . .M} . (5)

From this definition, the identification Hs(Γ) ∼= Hs(Γ1) × · · · × Hs(ΓM) follows. The
norm and dual products are naturally extended by the previous identification. The spaces
H̃s(Γ), and H̃s

〈0〉(Γ), are defined in similar fashion, imposing their components to be in

H̃s(Γj) and H̃s
〈0〉(Γj), for j = 1, . . . ,M , respectively.

For unbounded domains it is customary to use local Sobolev spaces, but since they are
not Hilbert spaces, we rather use weighted spaces as in [5, Section 2.5]1

W (G) :=

{
u ∈ D∗(G) :

u(x)√
1 + ‖x‖2

2 log(2 + ‖x‖2
2)
∈ L2(G),∇u ∈ L2(G)

}
. (6)

In [11] we show the inclusion W (G) ⊂ H1
loc(G), which allows to define trace operators on

the space W (G). In particular, for a family of arcs {Γi}Mi=1, the Dirichlet traces operator
γ±i over Γi, i ∈ {1, . . . ,M}, are defined over continuous functions u as

γ±i u(x) := lim
ε↑0

u(x± εn), ∀ x ∈ Γi, (7)

where n denote the unitary normal vector with direction of (r′2,−r′1). The definition is
extended to more general spaces by density arguments. If both traces are equal we simple
write γiu.

1For the sake of clarity, we have dropped sup-indices W 1,−1 used in the original work.
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2.4 Problem formulation

Now we can write the problem that we are interesting to study.

Problem 1. Let g ∈ H 1
2 (Γ) and the wavenumber k be real and non-negative. We seek

u ∈ H1
loc(Ω) such that

−∆u− k2u = 0 in Ω, (8)

γ±i u = g|Γi
i = 1, . . . ,M, (9)

condition at infinity(k). (10)

Condition (10) depends on k in the following way: if k > 0, we employ the classical
Sommerfeld condition; if k = 0, we seek solutions u ∈ W (Ω).

Theorem 1. Problem 1 has at most one solution.

Proof. For k = 0, we construct a variational formulation using domains {Ωj}Mj=1, defined
as in Assumption 2 and Green’s formula for those domains. Then, we can employ the
equivalence of norms for the homogeneous condition (g = 0). For k ≥ 0, the proof follows
from analytic continuation (see [11] for more details).

3 Boundary integral equation formulation

As it was previously mentioned, the unboundedness nature of Ω calls for boundary
integral methods, converting the partial differential problem from the domain Ω to the
boundary Γ. Let Gk(x,y) denote the free space fundamental solution, whose explicit
representation is well known and can be found in [12, Section 3.1]. This symmetric
satisfies

(−∆x − k2)Gk(x,y) = δx(y), ∀ k ≥ 0, (11)

where the derivatives operators are defined in distributional sense. For a fixed x, if we
restrict y to a set whose closure has positive distance to x then Gk(x,y) is an analytic
function. For an unknown λ = (λ1, . . . , λM) defined in Γ1 × . . . × ΓM , we search for a
solution of Problem 1 constructed as

u(x) =

∫
Γ

Gk(x,y)λ(y)dy =:
M∑
i=1

(SLi[k]λi)(x), ∀ x ∈ Ω, (12)

wherein

(SLi[k]λi)(x) :=

∫
Γi

Gk(x,y)λi(y)dy, (13)

denotes the single layer potential generated at a curve Γi. Though one can show that
(−∆x − k2)u(x) = 0, for x ∈ Ω, we still need to show that there exists at least one λ
such that γju = gj, and u has the correct behavior at infinity. To prove existence and
uniqueness of λ, we introduce some proprieties of boundary integral potentials.

4



José Pinto, Carlos Jerez-Hanckes

Proposition 1. For each arc Γi, with i ∈ {1, . . . ,M}, and k ≥ 0, the single layer potential

SLi[k] : H̃−
1
2 (Γi) → H1

loc(R2) is a linear bounded map. For k > 0 and λi ∈ H̃−
1
2 (Γi), the

potential u = SLi[k]λi fulfills the Sommerfeld radiation condition. For the Laplace case,

it holds that SLi[0] : H̃
− 1

2

〈0〉 (Γi)→ W (R2 \ Γi).

Proof. Boundedness is a direct consequence of the integration domain and the trivial
equality

SLi[k]λi = SL∂Ωi
[k]λ̃i, (14)

where λ̃i, is the extension by zero of λi over the boundary of the associated Ωi. The
mapping propriety for SLi[0] can be obtained from the asymptotic behaviur (see [10,
Corollary 8.11]),

(SLi[0]u)(x) = − 1

2π
〈u, 1〉 log ‖x‖2 +O(‖x‖−1

2 ), ‖x‖2 →∞. (15)

with the first term vanishing.

As a direct consequence of the last result, we can define the boundary integral operator:

Lij[k] = γiSLj[k]. (16)

Proposition 2 ([11]). The following properties hold

1. For k ≥ 0, the operator Lii[k] : H̃−
1
2 (Γi) → H

1
2 (Γi) is linear and bounded for

i ∈ {1, . . . ,M}.

2. For k = 0, let λi ∈ H̃
− 1

2

〈0〉 (Γi). Then, there exist constants ce,i > 0 such that

〈Lii[0]λi, λi〉Γi
≥ ce,i ‖λi‖2

H̃− 1
2 (Γi)

, i = 1, . . . ,M. (17)

3. For i ∈ {1, . . . ,M} and k ≥ 0, there exist constants ce,i > 0 and compact boundary

operators Kii[k] : H̃−
1
2 (Γi)→ H

1
2 (Γi), such that

〈(Lii[k] +Kii[k])λi, u〉Γi
≥ ce,i ‖u‖2

H̃− 1
2 (Γi)

, ∀λi ∈ H̃−
1
2 (Γi). (18)

4. Assume that k is not an eigenvalue of the Laplace operator with Dirichlet condi-
tions, for any domain enclosed by Γ̃i. Then, the self-interaction operators Lii[k] :

H̃−
1
2 (Γi) → H

1
2 (Γi) are coercive and injective for k > 0, and elliptic for k = 0 in

H̃
− 1

2

〈0〉 (Γi), for i ∈ {1, . . . ,M}.

5. For k ≥ 0 the cross-interaction operators Lij[k] : H̃−
1
2 (Γj) → H

1
2 (Γi) defined over

disjoint interfaces are compact for k ≥ 0, for all (i, j) ∈ {1, . . . ,M} × {1, . . . ,M}
with i 6= j.

5
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For M > 1 arcs, we can formulate the problem as a boundary integral equation, to
that end we denote by L[k] the operator matrix, with coefficients (L[k])ij = Lij[k].

Problem 2 (Boundary Integral Problem). For k > 0, let g ∈ H 1
2 (Γ). We seek λ ∈

H̃− 1
2 (Γ) such that

L[k]λ = g. (19)

In the case k = 0, we look for λ ∈ H̃−
1
2

〈0〉 (Γ).

The following properties concerning the operator L[k] are proved in [11].

Proposition 3. Let L[k] : H̃− 1
2 (Γ)→ H 1

2 (Γ), we have that for k ≥ 0 is a bounded linear
map. Moreover, for k > 0, L[k] is coercive injective whereas for k = 0, the map is coercive

and injective in the subspace H̃−
1
2

〈0〉 (Γ).

The proof uses Theorem 1 and so we need different spaces for the cases k > 0 and
k = 0 in order to fulfill the condition at infinity. By the classical Fredholm alternative
[12, Theorem 2.1.36], we can conclude the existence and uniqueness of Problem 2 which
also proves the existence of Problem 1.

Theorem 2. Problem 2 has a unique solution.

In what follows we will denote

H[k] :=

{
H̃−

1
2

〈0〉 (Γ) for k = 0,

H̃− 1
2 (Γ) for k > 0.

(20)

4 Numerical Analysis

In this section, we describe a family of finite dimensional spaces to perform a Galerkin
discretization of the boundary integral equation in Problem 2, and then study the ap-
proximation for the problem solution.

Let PN(Γi) denote the space of polynomials of degree lower or equal to N , parametrized
on Γi. Thus, for each p ∈ PN(Γi), there is q a polynomial in [−1, 1], such that p = q ◦ r−1

i .
We define the space:

P̂N(Γi) :=

{
p : p =

q(x)

|r′i ◦ r−1
i (x)|

, q ∈ PN(Γi)

}
. (21)

This space does not take into account the singularities at the end points of the arcs,
so the following space offers a better alternative,

Q̂N(Γi) :=
{
w−1
i p : p ∈ P̂N(Γi)

}
, (22)

where the weight wi(x) =
√

1− (r−1
i (x))2. We also denote by Q̂N,〈0〉(Γi) the subspace

excluding constant polynomials. Notice that if we choice a basis for the in [−1, 1], it
defines a basis for Q̂N(Γi) in a natural way. In what follows, we will fix the basis for
the polynomials as first kind Chebyshev polynomials, denoted by {Tn(t)}Nn=0 [5, Section
4.1.2]. The corresponding basis in Q̂N(Γi) will be denoted {φni }Nn=0. Hence, the discrete
problem can be written as

6
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Problem 3. For k ≥ 0, given N ∈ N0, and g ∈ H 1
2 (Γ) we seek λN ∈ CM(N+1) such that

L[k]λN = b, (23)

where L[k] ∈ CM(N+1)×M(N+1) with entries (L[k]ij)lm =
〈
Lij[k]φmi , φ

l
j

〉
, b ∈ CM(N+1) with

components bli =
〈
g,φl

i

〉
.

The approximation of Problem 2 is denoted by λN and is obtained as

(λN)i =
N∑
n=0

(λN)ni φ
n
i , i = 1, . . . ,M. (24)

The total discretization space is defined as

HN [k] :=

{∏M
i=1 Q̂N,〈0〉(Γi) for k = 0,∏M
i=1 Q̂N(Γi) for k > 0.

(25)

We state some proprieties of the discretization spaces, the proofs can be found in [11].

Proposition 4. {HN [k]}N is a increasing family of subsets of H[k], such that the union
is dense. If λ is the solution of Problem 2, and λN ∈ HN [k] is the solution approximation
found by solving (22), then there exists N0 ∈ N and C > 0 such that for all N > N0, it
holds

‖λ− λN‖H[k] ≤ C inf
qN∈HN [k]

‖λ− qN‖H[k]. (26)

The following theorem shows how well we can approximate the solution of the boundary
integral equations by an element of the discrete space HN [k].

Theorem 3. Let m ∈ N∗, N ∈ N. Assume Γ is the union of Cm-arcs and g ∈ Cm(Γ) ,
denote λ the solution of Problem 2. Then, there exists λN ∈ HN [k] such that:

• If m > 1 and N > m− 1, it holds

‖λ− λN‖H[k] ≤ C1N
−m+1. (27)

• If m =∞, then

‖λ− λN‖H[k] ≤ C2

√
Nρ−N , ρ > 1. (28)

In the above, C1 and C2 are positive constants depending on Γ, and g.

7



José Pinto, Carlos Jerez-Hanckes

5 Linear system construction

We now show how all computations required to solve the problem 3 can be reduced to
integrations over the canonical segment Γ̂ = (−1, 1)× {0}. Once the integration domain
is fixed, we show that the integration kernel can be split in a singular and regular parts,
where for the singular one closed expressions are available.

By definition, it holds

(L[k]ij)lm =
〈
L[k]φmi , φ

l
j

〉
Γj

=
〈
Lij[k]φmi , φ

l
j

〉
Γj
. (29)

Using the parametrizations ri and rj we have

(L[k]ij)lm =
〈
L̂ij[k](φmi ◦ ri)‖r′i‖2, (φ

l
j ◦ rj)‖rj‖2

〉
Γ̂
, (30)

where L̂ij[k] corresponds to the operator parametrized over the respective arcs. By the
definition of the discrete space, we have

(L[k]ij)lm =
〈
L̂ij[k]w−1Tm, w

−1Tl

〉
Γ̂
, (31)

where now w(t) =
√

(1− t2), and Tn denotes the n-th Chebyshev polynomial.
If j 6= i, the kernel function associated to this operator is analytic, and consequently,

we can expand it as a Chebyshev series using the FFT and compute integrals using the
same techniques as in [7]. If i = j, we employ the decomposition:

(L[k]ij)lm =
〈
Lr[0]w−1Tm, w

−1Tl
〉

Γ̂
+
〈

(L̂ij[k]− Lr[0])w−1Tm, w
−1Tl

〉
Γ̂
, (32)

where Lr[0] has as kernel G0(x, y) with a parametrization associated with Γ̂. Thus, the
first term on the right-hand side can be computed combining the following expression

G0(x,y) = − 1

2π
log |t− s| = 1

2π
log 2 +

∑
n≥1

1

n
Tn(t)Tn(s), (33)

and the orthogonality relation 〈w−1Tm, Tl〉Γ̂ = Cmδml, where Cm is known. For the second
term, the next result shows that it can be integrated as in the case i 6= j.

Proposition 5. If Γj is at least C2, the operator L̂jj[k] − LR[0] : H̃−
1
2 (Γ̂) → H

1
2 (Γ̂) has

a kernel that is at least C1.

Proof. For k > 0, Γi = Γj = Γ̂ the kernel differences can be written as

C|t− s|2 log |t− s|+ o(|t− s|2), (34)

from where one deduces that it is C1. If k = 0 and the arcs are not the same to Γ̂, the
result is given by computing the derivative of log |t− s| − log ‖ri(t)− rj(s)‖2. This two
cases and expansions of the Helmholtz kernel yield the desired result.

8
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6 Preconditioning

We use the result from the last section to construct a second kind formulation, whose
discretization can be approximated by a preconditioned version of the linear system in
Problem 3. A direct consequence of these results is that any preconditioner for the Laplace
problem in Γ̂ can be extended to work for problem 3.

Let us denote:

LR[0] :=


Lr[0] 0 . . . 0

0 Lr[0] . . . 0
...

...
. . .

...
0 0 . . . Lr[0]

 , L̂[k] :=


L̂11[k] L̂12[k] . . . L̂1M [k]

L̂21[k] L̂22[k] . . . L̂2M [k]
...

...
. . .

...

L̂M1[k] L̂M2[k] . . . L̂MM [k]

 . (35)

Notice that the discretization of L̂[k] produces the same matrix of Problem 3. The
following result is a direct consequence of Proposition 5.

Theorem 4. If Γ is at least of class C2, then the operator

L̂[k]− LR[0] : H̃−
1
2

(
M∏
j=1

Γ̂

)
→ H

1
2

(
M∏
j=1

Γ̂

)
(36)

is compact. The same result holds for k = 0 with domain H̃−
1
2

〈0〉 (
∏M

j=1 Γ̂).

Now, it is natural to consider the following operator decomposition:

L̂[k] = (L̂[k]− LR[0]) + LR[0], (37)

which leads to the second kind formulation:(
LR[0]

)−1 L̂[k]λ̂ =
[
I +

(
LR[0]

)−1
(L̂[k]− LR[0])

]
λ̂ =

(
LR[0]

)−1
ĝ, (38)

where I denotes the identity operator. The discretization of
(
LR[0]

)−1 L̂[k] can be ap-
proximated by the preconditioned linear system:

LR[0]−1L[k]λN = LR[0]−1b, (39)

where L[k] and b are defined as in Problem 3, and LR[0]−1 is the inverse of the discretization
of LR[0]. Notice that using the Chebyshev basis, the matrix LR[0] is diagonal and can be
easily inverted.

7 Matrix Compresion

We have shown that the coefficients of the matrix in Problem 3 are of the form

(L[k]ij)lm =
〈
L̂ij[k]w−1Tm, w

−1Tl

〉
Γ̂
. (40)

We recognize that this correspond to the l-th term in the Chebyshev expansion of
the function L̂ij[k]w−1Tm. It is well known that there exists a connection between the

9
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Figure 1: Test Case
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rate of decay of the coefficients in Fourier-Chebyshev expansion and the smoothness of the
function [16, Chapter 7 and 8]. In particular, when the function is analytic the coefficients
exhibit exponential decay. Hence, we know that for i 6= j the kernel function is analytic
and so it is the function L̂ij[k]w−1Tm. Hence, we can compute only a few terms and
discard the rest knowing that they will decay exponentially. A practical algorithm that
use this idea is presented in [11].

8 Numerical Results

For our numerical experiments, we first show convergence results for a configuration of
three different arcs as is shown in Figure 1a. We compute the H[k] norm of the absolute
value for k = 10, with overkill solution taken by approximating with N = 120 polynomials
per segment. Results are showed in Figure 1b confirming our findings.

Next, we show the performances of the proposed preconditioner and matrix compression
techniques for different wavenumbers. The results are summarized in Table 1: Size refers
to the length of the columns in the matrix L[k]; %Nnz is the percentage of entries of
the matrix that are nonzero after compression is applied, RelError denotes the relative
error when comparing the solutions of the full linear system and the compressed one. The
next three columns in Table 1 are related to the number of GMRES iterations needed to
obtain a residual bounded by 1e−8. The first one, No Pre., indicates no preconditioner is
applied, LR[0] is the preconditioner detailed in this work; and, finally Diag. is the diagonal
preconditioner.
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