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Abstract. The problem of the proppant transport, sedimention and jamming in the
hydraulic fracture is of current scientific and technological interest. For fully resolved
simulations of these processes a new model of incompressible viscous fluid flow with the
immersed solid particles is presented. The fluid-particle interaction is modeled using the
Immersed Boundary Method (IBM). For better approximation of the no-slip boundary
condition the multidirect forcing scheme is applied that consists in iterative correction of
the applied force. Particle transfer and rotation are simulated using the Newton-Euler
equations. The main feature of the proposed model is fully coupling of the fluid velocity
and the particle velocity using iterations. The proposed model was verified using the
benchmark problems: cavity flow problem, flow around the cylinder, the transfer and
rotation of a single particle in Poisseuille flow (Segre-Silberberg effect). The problem
was solved for various Reynolds numbers, particle sizes, densities, starting positions and
shapes.

1 INTRODUCTION

Many problems in nature and engineering involve flows of mixture that consists of
viscous fluid and particles of arbitrary sizes and shape. There are a few ways to simulate
such flows.

When the size of the particles is small relative to the characteristic size of the fluid
flow, the mixture is modeled as the “effective” viscous incompressible fluid. The rheology
parameters of the effective fluid are functions of the particles concentration.

But if the particle size is comparable with the characteristic size of the flow, one have
to consider each particle separately. In that way the direct numerical simulation (DNS)
is used. In this approach the hydrodynamic interactions between fluid and particles,
particles and walls as well as between particles themselves are simulated without any
averaging. Fluid is described in scope of Navier–Stokes (NS) equations. The particles are
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not treated as a phase but movement of each one is considered using the Newton-Euler
equations.

DNS methods can be divided into two main groups by the way how the wall and
particle boundaries are described by the computational mesh.

The methods of the first group such as Arbitrary Lagrangian–Eulerian method [1]
use computational meshes that conform to the physical boundaries of the particles and
the computational domain. In these methods boundary conditions are satisfied directly
and don’t reduce the order of the approximation of the whole problem. The another
advantage is that the forces applied to the particles are obtained without any additional
supposition. In this method the computational mesh is constructed at each time step to fit
the boundaries of the particles that moves in accordance with Newton’s law. On the other
hand, in the case of a large number of particles the Arbitrary LagrangianEulerian method
is less effective [2]. The main reason of that and the main drawback of the methods with
accurate boundary representation is the complexity of the mesh generation procedure and
projection errors caused by the remeshing that reduces the solution accuracy.

The problem of remeshing is common for all methods with accurate boundary descrip-
tion so the cases with many particles is preferably to simulate using computational meshes
that do not fit the boundaries. Such methods are Fictitious Domain Method (FDM) [3–5]
and the Immersed Boundary Method (IBM) [6]. These methods are based on the idea
of solving the flow equation on a mesh, over the entire domain, and defining the objects
inside the flow by adding Lagrangian points on their surfaces which may or may not
coincide with the Eulerian grid. Methods without mesh rebuilding are characterized by
simpler meshes, since it is not necessary to describe the domain boundaries.

In both groups of the methods the effect of particles on a fluid flow is described by the
addition of forces to the equations of fluid motion. In FDM forces are added in the mesh
cells, occupied by particles, such that the velocities inside the particle are equal to the
velocity of the solid body. In the cells adjacent to the particle the forces are added such
that the no slip condition at the fluid-particle boundary is satisfied. As it stated in [7]
the main problem of fictitious boundary methods is low accuracy in approximating the
boundaries through a non-adaptive grid.

The IBM proposed in [6] is based on the similar to FDM idea that the presence of
the solid particle inside the fluid flow domain can be formulated by adding appropriate
forces acting on the fluid. The difference is that in the IBM the forces are added in the
vicinity of the boundary while in FDM the forces are added inside the particle. Many
modifications and variant versions of IBM were developed to enhance accuracy, stability
and range of applications.

As it stated in [8] the last decade has witnessed a great interest in the fully-resolved
simulation of flows with many suspended particles. The majority of these studies use
some variant of the IBM. One of the directions of IBM development is the improvement
of its stability for wide range particle–fluid mass density ratio. Versions of the IBM
proposed in [9–12] are applicable for particle–fluid mass density ratio form 0.3 to 1000
and demonstrate the second order of approximation.

We propose a variant of IBM method in which particle velocities, fluid velocities,
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pressure and fluid-solid interaction forces are fully coupled in iterative scheme. For better
approximation of the no-slip boundary condition the multidirect forcing scheme is applied
that consists in iterative correction of the applied force.

2 GOVERNING EQUATIONS

We consider the problem of a viscous, incompressible fluid flow in a plane channel with
an absolutely rigid body placed there. The fluid flow is governed by the Navier-Stokes
equations

ρ
du

dt
= µ∆ u−∇p+ ρ f ,

∇ · u = 0,
(1)

where u = (u, v)T is the velocity vector, p is the pressure, ρ is the fluid density, µ is the
dynamic viscosity, f is the fictitious body force that affects the fluid flow near the surface

of the immersed body,
du

dt
means the total derivative

du

dt
=
∂ u

∂t
+ (u ·∇) u . (2)

Hydrodynamic stress tensor σ with components σij is written as follows

σij = −δijp+ µε̇ij, (3)

where ε̇ij is the strain rate tensor.
In terms of stress tensor σ the Navier-Stokes equation is rewritten as follows

ρ
du

dt
= ∇σ+ρ f . (4)

The velocity up at each point of the absolutely rigid particle can be decomposed into
the translational part and the rotational part

up = uc +ω× r, (5)

where uc is the translational velocity of the particle centroid, ω is the angular velocity of
the particle. The motion of the single particle is described by the NewtonEuler equations
for uc and ω

ρpVp
duc

dt
= ρ

∫
Γp

(σ ·n)dΓ = ρ

∫
Vp

(∇ · σ)dV,

ρpIp
dω

dt
= ρ

∫
Γp

[r×(σ ·n)] dΓ = ρ

∫
Vp

[r×(∇ · σ)] dV.

(6)
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The particle is assumed to be homogeneous with density ρp, Ip is the moment of inertia of
the particle with unit density, Vp is the volume of the particle with the surface Γp = ∂Vp,
n is the outward-pointing unit normal in Γp, the stress tensor σ equals the one in Navier-
Stokes equation (4).

In IBM the integrals in (6) are not calculated directly. The stress tensor ∇ · σ is
substituted from (4) into (6) and the following equations are considered

ρpVp
duc

dt
= ρ

d

dt

∫
Vp

u dV − ρ
∫
Vp

f dV,

ρpIp
dω

dt
= ρ

d

dt

∫
Vp

[r×u] dV − ρ
∫
Vp

[r× f ] dV.

(7)

In [13] it is assumed that the velocity of the fluid inside the solid particle satisfies
the rigid body motion condition (23). Substituting (23) to (7), we obtain the motion
equations for a single particle(

ρp
ρ
− 1

)
Vp
duc

dt
= −

∫
Vp

f dV,

(
ρp
ρ
− 1

)
Ip
dω

dt
= −

∫
Vp

[r× f ] dV.

(8)

So the motion of the particle is calculated using only the force f . In the case when the
densities of the particles are close to each other, this method becomes unstable, and the
direct calculation of the integrals of velocity change inside the particle is needed [9].

The model consists of fluid flow equations (1) and motion of particle equations (8).

3 NUMERICAL METHOD

3.1 Spatial discretization

Our method is based on the IBM developed in [13] and improved in [9]. This is a
so-called direct forcing method in which the additional force f is applied separately after
the discretization of Navier-Stokes equation.

The fluid flow is discretized using the Eulerian grid, and the solid body surface uses
the Lagrangian grid Γp, as shown in fig. 1.

The quantities in Euler grid are denoted by lower case letters with index (i, j) (xij,uij, f ij).
The Lagrangian quantities are denoted by upper case letters with index l (Xl,Ul,Fl). The
transfer from Eulerian grid to Lagrangian one is performed using the regularized Delta
function δd proposed by Griffith and Peskin [14]

Ul = EL(uij) =
∑
ij

uij δd(xij −Xl)hxhy. (9)

4



D.Kuranakov, D. Esipov, V. Lapin and L. Anisyutin

,i jp 1/2,i j+u

, 1/2i j+u

lU

lF

pΓ

1/2,i j+f

, 1/2i j+f

xh

yh

Figure 1: Lagrange and Euler meshes.

The inverse transfer from Lagrangian grid to Eulerian grid is made using formula

f ij = LE(Fl) =
∑
l

Fl δd(xij −Xl)∆Vl. (10)

Here hx, hy are the dimensions of the Eulerian grid and ∆Vl is the volume of the Lagrangian
grid cells.

The non-slip boundary condition is applied in Lagrangian grid

Up(Xl) = Ul . (11)

Here Up(Xl) is the velocity of the solid particle in the node Xl of Lagrangian grid, Ul is
the fluid velocity in this node.

3.2 SIMPLE method for Navier-Stokes equations solution

At the new time step n + 1 we predict the velocity of the fluid using the discretized
Navier-Stokes equation

un+1−un

τ
+

(u∇u)n + (u∇u)n+1

2
= −∇p

n+1/2

ρ
+

1

Re

(∆ u)n + (∆ u)n+1

2
. (12)

The force term f is not included to equation (12) and is applied further while correcting
the velocity. Equation (12) includes non-linear pressure gradient term and convection
term. In that way the iterations s are introduced to find the unknown pressure ps+1 =
pn+1/2 and velocity us+1 = un+1 distributions. At each iteration s the unknown velocity
us+1 is calculated in several steps using intermediate first (u∗) and second (u∗∗) prediction
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velocities [9]. The initial values of velocity and pressure are taken from the previous time
step: s = 0, ps = pn−1/2, us = un. The first prediction velocity u∗ is calculated using
Navier-Stokes equation for given pressure ps

u∗−un

τ
+

(u∇u)n + (u∇u)s

2
= −∇ps +

1

Re

(∆ u)n + (∆ u)∗

2
(13)

The system of non-linear equations arising due to the presence of non-linear term (u∇u)
is solved by the Biconjugate gradient stabilized method (BiCGStab).

Then the force f acting from the particle to the fluid is applied and the second prediction
velocity u∗∗ is calculated

u∗∗ = u∗ +τ f . (14)

The detailed description of force calculation will be presented further.
The correction of pressure p̃ is found from the Poisson equation with second prediction

velocity u∗∗.

∆p̃ =
ρ

τ
∇ · u∗∗ . (15)

The solution of Poisson equation (15) is found using the Seidel iterative method.
Finally the pressure ps+1 and the velocity us+1 are corrected and transition to the next

iteration step s takes place

ps+1 = ps + p̃,

us+1 = u∗∗−τ
ρ
∇p̃. (16)

The iterations allow to fulfill the continuity equation with the given precision, even if the
initial distribution of the pressure is far from the the required one.

3.3 Immersed boundary method. Direct and multidirect forcing schemes

The immersed boundary method consists in introducing the fictitious force f to the
Navier-Stokes equation (1) in such a way that the fluid velocity at the surface of the
particle satisfies the non-slip condition (11).

Direct forcing scheme consists in the following. The first prediction velocity is inter-
polated from Eulerian grid to Lagrangian grid using (9)

U∗
l = EL(u∗

ij) (17)

The force Fl in Lagrange nodes is corrected using the difference between the fluid first
prediction velocity U∗

l and the solid particle velocity Us(Xl)

Fl =
Up(Xl)−U∗

l

τ
, (18)

The force is interpolated to the Euler mesh

f ij = LE(Fl) (19)
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The force f ij is applied to the first prediction velocity u∗
ij and the second prediction

velocity u∗∗
ij is calculated

u∗∗
ij = u∗

ij +τ f ij . (20)

Using the regularized delta-function for the interpolation results in a diffuse distribution
of the force around the interface of the particle. Therefore the calculated velocity u∗∗

ij

satisfies the no-slip boundary condition (11) not very well.
In [15] the multidirect forcing scheme was proposed to improve the force and velocity

calculation. In this method the force is applied and the second prediction velocity is
corrected several (Nf ) times. In the initial iteration f = 0 the value of second prediction

velocity equals to the first prediction velocity u∗∗,f
ij = u∗

ij. Then the direct forcing scheme
is applied Nf times

U∗∗,f
l = EL(u∗∗,f

ij ),

Ff
l =

Up(Xl)−U∗∗,f
l

τ
,

f fij = LE(Ff
l ),

u∗∗,f+1
ij = u∗∗,f

ij +τ f fij .

(21)

Finally the second prediction velocity is u∗∗
ij = u

∗∗,Nf

ij , and the applied force is f ij =

Nf∑
f=0

f fij.

The multidirect forcing scheme is used instead its simplified representation in equation
(14).

4 NUMERICAL EXPERIMENTS

4.1 Stationary flow around the cylinder in large domain

For the verification of the method we solve the benchmark problem of the stationary
flow around the cylinder placed to the infinite domain and compare it with the results
obtained by other researchers. The cylinder diameter equals D = 1, the inflow velocity
is U = 1. The domain is taken large enough to reduce the influence of the domain
finiteness (15 × 15). The mesh sizes are 300 × 300. The cylinder is place closer to the
inflow wall at distance 5 from it. The pressure distributions and streamtraces for two
values of Reynolds number Re = 20 and Re = 40 are presented in fig. 2. Two symmetric
vortices at the leeward sides of each cylinder are generated. The summary of results and
comparison to other authors is presented in table 1. We compare the drag force coefficient

Cd =
2fd
ρU2D

, the length L of recirculation zone and the angle θ of separation point. The

values of the drag force and the size of the vortices behind the cylinder are overestimated.
This may be caused by the diffuse distribution of the IBM force that increases the real size
of the cylinder and the finite size of the domain as was mentioned in [13]. The streamlines
pass very close to the cylinder that demonstrates that the no-slip boundary condition is
fulfilled with high presision.
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Table 1: Summary of the results and comparison to other investigators for Re = 20 and Re = 40.

Re = 20 Re = 40
Cd L θ Cd L θ

Fornberg (1980) [16] 2.0 0.91 43.2◦ 1.5 2.24 55.6◦

Calhoun (2002) [17] 2.19 0.91 45.5◦ 1.62 2.18 54.2◦

Russel and Wang (2003) [18] 2.02 0.93 43.2◦ 1.52 2.32 53.1◦

Our method 2.4 1.06 38.5◦ 1.8 2.4 47.1◦
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Figure 2: Pressure distribution and streamtraces for the flow around the cylinder problem with Re = 20
(left) and Re = 40 (right).

4.2 Non-stationary flow around the cylinder in large domain

In the case of Re = 100 the flow becomes unstable and the von Krmn vortex street
develops. To verify our method we compare the drag force coefficient Cd and its oscillation

amplitude, lift force Cl oscillation amplitude and the Strouhal number St =
d

UT
. The

results are presented in table 2.

Table 2: Summary of the results and comparison to other investigators for Re = 100.

Cd Cl St
Xu and Wang (2006) [19] 1.42± 0.013 ±0.34 0.171
Calhoun (2002) [17] 1.33± 0.014 ±0.298 0.175
Russell (2003) [18] 1.38± 0.007 ±0.276 0.165
Our method 1.53± 0.011 ±0.376 0.170

The evolution of Cd and Cl is shown in fig. 3. While the von Krmn vortex street is
not formed yet the drag Cd falls down the value of 1.29 and the lift Cl equals zero. Then
the von Krmn vortices start to separate from the surface of the cylinder and the drag
force increases to the value of 1.53. The oscillation amplitudes of drag and lift are 0.011
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and 0.376 correspondingly. As in the case of stationary flow the values of the forces are
overestimated due to the diffusion of IBM force. The snapshots of pressure distribution
and streamtraces for one period T of oscillation are shown in fig. 4.
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 C
l
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2

Figure 3: Drag Cd and lift Cl forces versus time t for the flow around the cylinder with Re = 100.
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Figure 4: Pressure distribution and streamtraces for the flow around the cylinder problem with Re = 100
for one period T of oscillation.
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4.3 Poiseuille flow with one particle

The flow configuration is illustrated in fig. 5. The solid round particle of diameter D
is placed into a periodical channel of width W and length L.

The initial distribution of fluid velocity are given by the undisturbed Poiseuille fluid
flow with maximal velocity u0 = 1:

u(x, y) = u0 = 1−
(
y −W/2
W/2

)2

. (22)

The initial translational uc and rotational ω velocities of the particle are given by the
undisturbed Poiseuille fluid flow:

uc(x, y) = u0, ω(x, y) =
1

2

∂u0

∂y
=
y −W/2
(W/2)2

. (23)

At the channel boundaries and in the surface of the immersed solid particles no-slip
boundary conditions are applied

u
∣∣∣
Γw

= 0, u
∣∣∣
Γp

= up . (24)

The difference of the pressure between the inlet and outlet of the channel corresponding
to the Poisseuille flow is applied

p
∣∣∣
Γin

− p
∣∣∣
Γout

=
8L

Re
. (25)

The periodical boundary conditions for velocity are applied in Γin and Γout.

u
∣∣∣
Γout

= u
∣∣∣
Γin

. (26)

inΓ outΓ

wΓ

wΓ

cu

�

0u

L

x

y

W
h

Figure 5: The scheme of the Segre-Silberberg effect simulation

When the particle approaches the outlet boundary Γout, it is relocated to the inlet
boundary Γin. Note that when the particle is near Γin and Γout it influences the fluid flow
of the opposite part of the fluid, as shown in the first snapshot in fig. 6. The parameters
of simulation are the following: channel width W = 1, channel periodical length L = 3,

particle diameter D = 0.2, channel Reynolds number Re =
ρu0W

µ
= 20.
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Figure 6: The particle in flat channel: snapshots of pressure distribution and streamtraces for the fluid
velocity in coordinate system moving with the particle for various time moments.

In fig. 7 the velocity profiles for the undisturbed Poisseuille flow and the flow disturbed
by single particle are presented. The slip velocity us is considerable and its value is 0.043.
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The slope of the velocity profile is less in the particle than in the undisturbed flow. But
near the wall the slope of the disturbed velocity is increased compared to the undisturbed
flow.

y

u

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

us

Figure 7: Velocity profile for the undisturbed Poisseuille flow (solid) and the flow disturbed by single
particle (dashed).

In fig. 8 the evolution of the particle vertical position h and angular velocity is shown.
The particle started from the position h0 = 0.51 and migrated to the equilibrium position
heq = 0.715. The equilibrium angular velocity equals ωeq = 0.813.

According to the experimental observations made in [20] and the closed-form solution
[21], [22] the spherical neutrally buoyant particle placed into the Poiseuille flow occupies
the position at distance heq = 0.8 (0.2 from the upper wall). Experimental results for
two- and three-dimensional Poiseuille flow reported in [23] showed that the equilibrium
positions are identical for both cases. The distance 0.2 corresponds to small particles and
low Reynolds numbers. When the particle size and Reynolds number are large enough,
the equilibrium position of the particle moves to the centre of the channel [24, 25], that
agrees with our numerical simulations.
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Figure 8: The particle vertical position h and angular velocity ω versus time.

5 CONCLUSION

The proposed scheme may be implemented for the simulation of disperse flows in such
problems as proppant transport in hydraulic fractures, hemodynamics, separation of parti-
cles of different sizes in microflows, etc. The model was verified using benchmark problem
of stationary and non-stationary overflow of cylinder in large domain, and the problem of
circle particle migration in Poisseuille flow. It was shown that the method overestimates
the force acting to immersed body due to the force spreading while interpolation from
Lagrange grid to Eulerian grid for about 20%. The particle in the channel migrates to
the equilibrium position that is closer to the center than analytically predicted.

This work is one more step to understanding the processes in disperse flows. The model
is planned further to be used for simulations of many particles transport and its jamming.
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