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Abstract. We use the newly proposed GENERIC-based variational formulation for
initial boundary value problems of finite strain thermoelasticity to design structure-
preserving numerical methods. Therefore we first perform a discretization in space
introducing a L2 projection equation to keep the necessary test functions in the finite
element space. Temporal discretization is then carried out using discrete derivatives
to finally obtain Energy-Momentum-Entropy (EME) consistent numerical methods
with enhanced numerical stability and robustness.

1 INTRODUCTION

The GENERIC (General Equation for the Non-Equilibrium Reversible-Irreversible
Coupling) framework is a double-generator formalism for the thermodynamically con-
sistent formulation of coupled problems in which the reversible and the irreversible
contribution to the time evolution equation are additively split. For a comprehensive
account on the GENERIC framework we refer to the book of Öttinger [1].
The extension of GENERIC framework to solid mechanics has been performed re-
cently (see [2]-[4]). The great potential of the GENERIC framework has been recog-
nized by Romero [5, 6] for the construction of structure-preserving numerical meth-
ods and termed this schemes thermodynamically consistent (TC) schemes (see also
[7]-[11]). If the TC scheme is additionally capable to conserve momentum maps
associated to symmetries of the underlying systems the resulting scheme may be
also termed Energy-Momentum-Entropy (EME) scheme which can be viewed as the
extensions to irreversible systems of earlier Energy-Momentum (EM) schemes for
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reversible systems with symmetry such as large strains elastodynamics and flexible
multibody dynamics. We refer to [12] for a comprehensive overview of previous de-
velopments. The limitations of the previously developed GENERIC-based numerical
methods for thermomechanically coupled solids, namely (i) the restriction to the use
of the entropy density as thermodynamical variable, and (ii) the restriction to iso-
lated (or closed) systems, have been resolved in the companion contribution (see
[15]). Full details of the proposed approach can be found in our recent work [13].
We therefore use this newly proposed generalized GENERIC-based variational for-
mulation which (i) allows for the free choice of the thermodynamical variable among
either the absolute temperature, the internal energy density or the entropy density
and which (ii) takes boundary effects into account. This GENERIC-based varia-
tional formulation for large strain elastodynamics is then used as the basis for the
construction of EME numerical methods as will be shown subsequently.

2 GENERIC-BASED VARIATIONAL FORMULATION FOR OPEN

THERMO-ELASTO-DYNAMICAL SYSTEMS

We first consider a continuum body with material points X = Xiei in the reference
configuration B ⊂ R3 (Fig. 1). Here and in the sequel the summation convention
applies to repeated indices. Moreover, ei denote the canonical base vectors in R3.
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Figure 1: Reference configuration B with boundary ∂B and current configuration
ϕt(B) at time t. External tractions tt = PtN act on the boundary of the current
configuration. In addition to that, the heat flux across the current boundary is
denoted by qt =Qt ⋅N.

Within the Lagrangian description of continuum mechanics the deformed config-
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uration of the body at time t is characterized by the deformation map ϕt ∶ B ↦ R3.
The velocity of the material point X ∈ B located at x = ϕt(X) is given by vt = ∂ϕt/∂t.
Alternatively we will often write vt = ϕ̇t. The conjugate momentum density is de-
fined by pt = ρvt. The deformation gradient corresponds to the Jacobian of the
deformation map, Ft = ∂ϕt/∂X. In what follows the partial derivative with respect
to the material coordinates will be denoted by the nabla operator. Accordingly, the
deformation gradient assumes the form

Ft = ∇ϕt (1)

A natural choice for the thermodynamic state variable is the absolute temperature
θt ∶ B ↦ R+. Alternatively, the entropy density ηt ∶ B ↦ R or the internal energy
density ut ∶ B ↦ R could be chosen.
Before we can state the variational problem we need to deal with the initial boundary
value problem (IBVP) pertaining to large strain thermoelastodynamics. For this we
decompose the boundary B of the continuum into a displacement boundary ∂ϕB, on
which ϕt = ϕt, and a traction boundary ∂σB, on which PtN = tt, where ϕt and tt
are prescribed functions for t ≥ 0. Moreover, ∂ϕB ∪ ∂σB = ∂B and ∂ϕB ∩ ∂σB = ∅. In
this context we introduce the first Piola-Kirchhoff stress tensor

Pt = P′t(∇ϕt, τt) = ∂∇ϕu′(∇ϕt, τt) − ∂τu′(∇ϕt, τt)
∂τη′(∇ϕt, τt)∂∇ϕη

′(∇ϕt, τt) (2)

whereas the absolute temperature is given via the important formula (see [1] and [3])

θ′(∇ϕt, τt) = ∂τu′(∇ϕt, τt)
∂τη′(∇ϕt, τt) (3)

Similarly, for the thermal part we consider the subsets ∂τB and ∂qB, with the proper-
ties ∂τB∪∂qB = ∂B and ∂τB∩∂qB = ∅. Here, the thermodynamic variable is prescribed
on ∂τB, i.e. τt = τ t, whereas the heat flux is prescribed on ∂qB, i.e. Qt ⋅N = qt.
Further, we introduce the material heat flux vector Qt ∶ B ↦ R3 through Qt =
Q′(∇ϕt, τt), where

Q′ = (θ′)2Kt∇(∂τη′
∂τu′
)

= −Kt∇θ
′

(4)

and where Kt = K′t is the positive semi-definite material conductivity tensor. We
seek a formalism to determine the motion ϕt ∶ B ↦ R3, the linear momentum density
pt ∶ B ↦ R3 and the thermodynamic variable τt ∶ B ↦ R for t ∈ (0,T ] with initial
conditions of the form ϕ0 =X, p0 = ρV0, and τ0 = τ ini in B. Here V0 is a prescribed
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material velocity field and τ ini is a prescribed field of the thermodynamic variable
τ ∈ {θ,η,u}. We state the following GENERIC-based variational formulation for the
present IBVP at hand

0 =∫
B

wϕ ⋅ (ϕ̇t −
1

ρ
pt) dV

0 =∫
B

(wp ⋅ (ṗt − b) +P′ ∶ ∇wp) dV −∫
∂σB

wp ⋅ tt dA

0 =∫
B

(wτ τ̇t +∇(1
ρ
pt) ∶ ( wτ

∂τη′
∂∇ϕη

′) −∇( wτ

∂τu′
) ⋅Q′) dV + ∫

∂qB

wτ

∂τu′
qt dA

(5)

and refer to [13, 15] for further details on the GENERIC-based variational formu-
lation of large strain thermoelastodynamics where also important balance laws are
directly deduced from it’s variational form. Here, wϕ,wp ∶ B ↦ R3 and wτ ∶ B ↦ R

are test functions which have to satisfy the boundary conditions wϕ = 0 and wp = 0
on ∂ϕB, and wτ = 0 on ∂τB. These equations have to hold for all times t ≥ 0 and for
arbitrary test functions subject to the above mentioned boundary conditions.
Frame-indifferent arguments require that the functions of u′ and η′ can be expressed
as

u′(∇ϕt, τt) = u′′(Ct, τt)
η′(∇ϕt, τt) = η′′(Ct, τt) (6)

where Ct = FT
t Ft is the right Cauchy-Green tensor written in terms of the deforma-

tion gradient Ft. Taking (6) into account, we obtain

∂∇ϕu
′ = 2Ft∂Cu

′′(C, τ)
∂∇ϕη

′ = 2Ft∂Cη
′′(C, τ) (7)

together with
∂τu

′ = ∂τu′′(C, τ)
∂τη

′ = ∂τη′′(C, τ) (8)

3 STRUCTURE-PRESERVING SCHEMES

3.1 Discretization in space

We first perform the discretization in space of the variational formulation. There-
fore we apply standard isoparametric finite elements based on finite dimensional
approximations of the state variables at time t, given by

ϕ
h
t (X) =

nnode∑
a=1

Na(X)ϕa(t) , ph
t (X) =

nnode∑
a=1

Na(X)pa(t) (9)
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and

τht (X) =
nnode∑
a=1

Na(X) τa(t) (10)

Here, Na ∶ B → R denote the nodal shape functions and ϕa(t),pa(t) ∈ R3, τa(t) ∈ R
are the respective nodal values at time t. Moreover, nnode denotes the total number
of nodes in the finite element mesh. The standard (Bubnov) Galerkin approach relies
on analogous approximations for the test functions in the variational equations (5),
wϕ,wp and wτ , denoted by wh

ϕ,w
h
p and wh

τ .
The semi-discrete problem then takes the following form

0 =∫
B

wh
ϕ ⋅ (ϕ̇h

t −
1

ρ
ph
t ) dV

0 =∫
B

(wh
p ⋅ (ṗh

t − b
h) +Ph′

∶ ∇wh
p) dV − ∫

∂σB
wh

p ⋅ t
h
t dA

0 =∫
B

(wh
τ τ̇

h
t +∇(1ρph

t ) ∶ ( wh
τ

∂τηh
′′
∂∇ϕη

h′) −∇( wh
τ

∂τuh
′′
) ⋅Qh′′) dV + ∫

∂qB

wh
τ

∂τuh
′′
qht dA

(11)
Following the procedure in [13, 15] for the verification of the important balance laws,
namely the balance of the total angular momentum, the balance of energy and the
balance of entropy, specific choices for the test functions in (11) have to be made.
Depending on the specific choice for the thermodynamic variable, these test functions
may not belong to the finite element space. Therefore a simple modification (see [6, 9]
for more details) is introduced to maintain the satisfaction of the balance laws in the
semi-discrete setting. Whenever the semi-discrete approximations wh

τ = ∂τ◻h, where
◻ ∈ {u′′,η′′}, are not in the finite element space, a L2 projection of the specific
quantity onto the finite element space need to be performed, where all the previous
approximation ∂τ◻h need to be replaced with it’s projected counterpart. The L2

projection equation is of the following form

0 = ∫
B

wh
pr(∂τ◻h − ∂prτ ◻h)dV , where ∂prτ ◻

h = nnode∑
a=1

Na(X)∂τ ◻a (t) (12)

and where wh
pr ∶ B ↦ R is a discrete test function.

Remark 1. For the formulations in the inner energy and the entropy density only
one projection need to be carried out whereas for the formulation in the absolute tem-
perature two projections are in general necessary for the verification of the important
balance laws in the semi-discrete settings (see Table 1 for more details). If the specific
heat capacity is chosen to be constant (see i.e. (21)) the formulation in the absolute
temperature reduces to one projection equation as well.

5



Mark Schiebl and Peter Betsch

The resulting scheme then takes the following form

0 =∫
B

wh
ϕ ⋅ (ϕ̇h

t −
1

ρ
ph
t ) dV

0 =∫
B

(wh
p ⋅ (ṗh

t − b
h) +Ph′

∶ ∇wh
p) dV − ∫

∂σB
wh

p ⋅ t
h
t dA

0 =∫
B

⎛
⎝wh

τ τ̇
h
t +∇(1ρph

t ) ∶ ⎛⎝
wh

τ

∂
pr
τ η

h′′

algo

∂∇ϕη
h′
⎞
⎠ −∇

⎛
⎝

wh
τ

∂
pr
τ u

h′′

algo

⎞
⎠ ⋅Q⋆h

′′⎞
⎠ dV

+ ∫
∂qB

wh
τ

∂
pr
τ u

h′′

algo

qht dA

0 =∫
B

wh
pr (∂τ◻h′′ − ∂prτ ◻h′′) dV

(13)

where
Ph′ = 2Fh

t (∂Cuh′′ − θ⋆h′′∂Cηh′′)
∂∇ϕη

h′ = 2Fh
t ∂Cη

h′′
(14)

It can be shown, that (13) preserves all key balance laws in the semi-discrete setting.
The associated evaluation of the absolute temperature θ⋆h

′′

, of the material heat flux
vector Q⋆h

′′

and of the quantities ∂pr◻h
′′

algo can be found in Table 1, where for the semi-
discrete case all time-discrete quantities have to be replaced with the corresponding
time-continuous quantity.

3.2 Discretization in time

Finally we perform the discretization in time of the semi-discrete variational for-
mulation eq. (13). To this end we focus on a representative time interval [tn, tn+1]
with corresponding time-step size ∆t = tn+1 − tn. The discrete approximations at
times tn and tn+1 of the continuous variable (●)t will be denoted by (●)n and (●)n+1,
respectively. Moreover, the approximation of any state variable (●)t at mid-point
time tn+ 1

2
= 1

2(tn + tn+1) is given by (●)n+ 1

2
= 1

2((●)n + (●)n+1). Assume that the state

variables ϕn,pn ∶ B ↦ R3 and τn ∶ B ↦ R, τn ∈ {θn,ηn,un} are given.
We aim at the determination of the corresponding state variables (ϕn+1,pn+1, τn+1).
In this connection we make use of the notion of a discrete derivative in the sense
of [16], where Ph′

algo is the algorithmic first Piola-Kirchhoff stress tensor and θ⋆h
′′

algo is
the algorithmic absolute temperature. The evaluation of the algorithmic absolute
temperature and of the material heat flux vector Q⋆h

′′

algo can be found in Table 1.

Ph′

algo = 2Fh
n+ 1

2

(D̄Cu
h′′
− θ⋆h

′′

algoD̄Cη
h′′)

∂Fη
h′

algo = 2Fh
n+ 1

2

D̄Cη
h′′

(15)
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Accordingly, a discrete version of (5) is given by

0 =∫
B

wh
ϕ ⋅ (ϕh

n+1 −ϕ
h
n

∆t
−
1

ρ
ph
n+ 1

2

) dV
0 =∫

B

(wh
p ⋅

ph
n+1 − p

h
n

∆t
−wh

p ⋅ b +∇w
h
p ∶ P

h′

algo) dV −∫
∂σB

wh
p ⋅ t

h

n+ 1

2
dA

0 =∫
B

wh
τ

⎛
⎝
τhn+1 − τ

h
n

∆t
+∇(1

ρ
ph
n+ 1

2

) ∶ ⎛⎝
∂Fη

h′

algo

∂prτ ηh
′′

algo

⎞
⎠
⎞
⎠ dV

− ∫
B

∇
⎛
⎝

wh
τ

∂
pr
τ u

h′′

algo

⎞
⎠ ⋅Q⋆h

′′

algo dV + ∫
∂qB

wh
τ

∂
pr
τ u

h′′

algo

qh
n+ 1

2

dA

0 =∫
B

wh
pr(D̄τ◻

h′′
− ∂prτ ◻

h′′)dV

(16)

To specify the specific discrete derivatives, D̄C◻
h and D̄τ◻

h, we first collect the
arguments of the density functions in the following vector

π = (C, τ) = (π1,π2) (17)

Using this notation we introduce partitioned discrete derivatives D̄π1◻h = D̄C◻
h and

D̄π2◻h = D̄τ◻
h in the sense of [16] by

D̄πi◻
h = 1

2
(D̄πi ◻

h
n+1,n +D̄πi◻

h
n,n+1), i ∈ Y = {1, 2}

D̄πi
n+1,n
◻
h = D̄πi ◻

h (πi
n+1,π

i
n)∣πj

n+1
,πk

n
, ∀j ∈ Y ∶ j < i, k ∈ Y ∶ k > i

D̄πi
n,n+1
◻
h = D̄πi ◻

h (πi
n,π

i
n+1)∣πj

n,π
k
n+1

, ∀j ∈ Y ∶ j < i, k ∈ Y ∶ k > i
(18)

where the discrete operators D̄πi ◻h (πi
n+1,π

i
n)∣πj

n+1
,πk

n
and D̄πi ◻h (πi

n,π
i
n+1)∣πj

n,π
k
n+1

are

defined as

D̄πi ◻
h ∣

π
j
n+1

,πk
n
= ∂πi ◻

h (πi

n+ 1

2

)∣
π
j
n+1

,πk
n

+

◻h(πi
n+1)∣πj

n+1
,πk

n
− ◻h(πi

n)∣πj
n+1

,πk
n
− ⟨∂πi ◻h (πi

n+ 1

2

)∣
π
j
n+1

,πk
n
,∆πi,h⟩

∣∣∆πi,h∣∣2 ∆πi,h

D̄πi ◻
h ∣

π
j
n,π

k
n+1

= ∂πi ◻
h (πi

n+ 1

2

)∣
π
j
n,π

k
n+1

+

◻h(πi
n+1)∣πj

n,π
k
n+1

− ◻h(πi
n)∣πj

n,π
k
n+1

− ⟨∂πi ◻h (πi

n+ 1

2

)∣
π
j
n,π

k
n+1

,∆πi,h⟩
∣∣∆πi,h∣∣2 ∆πi,h

(19)
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Hereby ⟨., .⟩ denotes the inner product and D̄πi◻h the discrete gradient of ◻h with
respect to πi. It can be shown that eq. (16) preserves all key balance laws in the
discrete setting and therefore represents a structure-preserving numerical method
with enhanced numerical stability and robustness compared to classical methods
(see [13] for GENERIC-based midpoint schemes).

Table 1: Resulting algorithmic absolute temperature and algorithmic material heat
flux vector depending on the specific choices for τ

τ ∂τu
h′′

algo ∂τη
h′′

algo θ⋆h
′′

algo Q⋆h
′′

algo

η ∂
pr
η ũh 1 ∂

pr
η ũh −K̃

h
n+ 1

2
∇θ̃⋆halgo

θ ∂
pr
θ
ūh ∂

pr
θ
η̄h ∂

pr
θ
ūh[∂pr

θ
η̄h]−1 −K̄

h
n+ 1

2
∇θ̄⋆halgo

u 1 ∂
pr
u η̂h [∂pr

u η̂h]−1 −K̂
h
n+ 1

2
∇θ̂⋆halgo

4 MATERIAL MODEL

The Helmholtz free energy density that will be used in Section 5 is given by

ψ(∇ϕ, θ) = ψ1(∇ϕ) +ψ2(θ) − (θ − θ0)ψ3(J) (20)

where

ψ1(∇ϕ) = µ
2
(∇ϕ ∶ ∇ϕ − 3 − 2lnJ − 2

3
(J − 1)2) +Wvol(J)

ψ2(θ) = c (θ − θ0 − θ log(θ/θ0))
ψ3(J) = 3βW ′

vol(J)
Wvol(J) = λ +

2
3µ

4
((lnJ)2 + (J − 1)2)

(21)

Here, J = det∇ϕ is the determinant of the deformation gradient and µ, λ are pre-
scribed parameters, c > 0 is the specific heat capacity at constant deformation, β is
the coefficient of thermal expansion, and θ0 is the reference temperature. Concerning
the constitutive equation (4) for the material heat flux vector, we assume thermally
isotropic material, with material conductivity tensor given by

Kt = kJC−1 (22)
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5 NUMERICAL EXAMPLE

θa

t̄a θb

t̄be1

e2

e3
290

313.33

336.67

360

0 2 4 6 8 10
0

1

2

t

f(t)

Figure 2: L-shaped block: Mechanical boundary conditions (left), discretised block
with initial temperature distribution (middle), and load function over time (right)

The numerical example deals with the L-shaped block depicted in Fig. 2. The
spatial discretization of the block relies on 117 tri-linear finite elements leading to 224
nodes. The initial temperature field is varying linearly over the height (x3 direction)
of the block. In particular, at x3 = 0, the initial temperature is prescribed as θa,
while at x3 = h, the temperature is prescribed as θb. The whole block is assumed to
be thermally insulated (qt = 0 on ∂qB = ∂B). Starting at rest, Piola traction vectors
t̄a and t̄b are acting on two parts of the boundary surface of the block (Fig. 2). The
external loads are applied in the form of a hat function over time. In particular, the
traction vectors are given by

t̄a = −t̄b = f(t)⎛⎜⎝
256/9
512/9
768/9

⎞⎟⎠Pa, f(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t for 0s ≤ t ≤ 2.5s

5 − t for 2.5s ≤ t ≤ 5s

0 for t > 5s.

(23)

Table 2 provides a summary of the data used in the simulations. No Dirichlet bound-
ary conditions are applied. The Piola traction vectors introduce energy into the
system, whereas after loading phase the total energy must be a conserved quantity.
This simulation was investigated previously with the classical midpoint rule leading
to numerical instabilities for larger time step sizes (see [13]). To emphasize the nu-
merical stability and robustness of the (EME)τ integrators we chose the largest time
step size in [13] which led to early instabilities and finally to a failure of the iterative
(Newton-Raphson) solution procedure.

9
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Table 2: L-shaped block: Data used in the simulations

Material parameters µ 997.5 Pa Geometry of L-shape
λ Pa

Specific heat capacity c 100 JK−1m−3

h

b

b

b

b

Coupling coefficient β 2.233 ⋅ 10−4 JK−1

Thermal conductivity k 10 WK−1m−1

Ref. temperature θ0 293.15 K
Mass density ρ 100 kgm−3

Initial temperature θa 290 K
θb 350 K

Geometry h 10 m
b 3 m

Newton tolerance ε 10−8 -
Simulation duration T 250 s
Time step ∆t 0.4 s

As expected, all (EME)τ schemes correctly reproduce the first law of thermody-
namics with energy conservation up to numerical precision after loading phase (up
to numerical round-off), see Fig. 3 and 4. Further the total entropy ought to be a
non-decreasing function of time since no entropy flux over the boundary is present
during the simulation time which is correctly reproduced by all (EME)τ schemes
which can be observed in Fig 5 and 6.

0 50 100 150 200 250
3.25

3.3

3.35

⋅105

t [s]

E n+
1
[J
]

(EME)u-∆t=0.4
(EME)η-∆t=0.4
(EME)θ-∆t=0.4

Figure 3: Total energy, (EME)τ
schemes

0 50 100 150 200 250
−2

0

2

4

6
⋅10−8

t [s]

E n+
1
−
E n[

J
] (EME)u-∆t=0.4

(EME)η-∆t=0.4
(EME)θ-∆t=0.4

Figure 4: Discrete energy difference,
(EME)τ schemes
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0 50 100 150 200 250
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t [s]

S
n
+
1
[J
/K

]

(EME)u-∆t=0.4
(EME)η-∆t=0.4
(EME)θ-∆t=0.4

Figure 5: Total entropy, (EME)τ
schemes

0 50 100 150 200 250
0

0.5

1

1.5

⋅10−1

t [s]

S
n
+
1
−
S
n
[J
/K

]

(EME)u-∆t=0.4
(EME)η-∆t=0.4
(EME)θ-∆t=0.4

Figure 6: Discrete entropy differ-
ence, (EME)τ schemes
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[14] H.C. Öttinger. Nonequilibrium thermodynamics for open systems. Physical
Review E, 73(3):036126–1–10, 2006.

[15] P. Betsch and M. Schiebl. Variational formulations for large strain thermo-
elastodynamics based on the GENERIC formalism. In Proceedings of the 6th
European Conference on Computational Mechanics, Glasgow, UK, 11-15 June
2018.

[16] Oscar Gonzalez. Time integration and discrete hamiltonian systems. Journal
of Nonlinear Science, 6(5):449, 1996.

12


	INTRODUCTION
	GENERIC-BASED VARIATIONAL FORMULATION FOR OPEN THERMO-ELASTO-DYNAMICAL SYSTEMS
	STRUCTURE-PRESERVING SCHEMES
	Discretization in space
	Discretization in time

	MATERIAL MODEL
	NUMERICAL EXAMPLE

