
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

PROFILING AND APPLICATION OF THE MULTI-SCALE
UNIVERSAL INTERFACE (MUI)

A. Skillen1, S.M. Longshaw1, G. Cartland-Glover1 , C. Moulinec1, D.R.
Emerson1

1 Scientific Computing Department,
The Science and Technology Facilities Council,

UK Research and Innovation,
Daresbury Laboratory,

Warrington,
WA4 4AD, UK

alex.skillen@stfc.ac.uk

Key words: Code Coupling, HPC, neutronics-CFD coupling

Abstract. The aim of this paper is to test the scalability of the multi-scale universal
interface (MUI) code coupling library. This has been done by coupling two independent
synthetic solvers to one another, which are then given an embarrassingly parallel workload.
The quantity of work done by each synthetic solver, and the amount of data transferred,
is representative of a typical multi-physics coupled problem. Both volumetric coupling
(where whole fields are transferred), and interface coupling (where several variables at the
two-dimensional interface between three-dimensional meshes) are tested. It is shown that
the multi-scale universal interface scales well to a minimum of O(104) MPI tasks.

We also demonstrate the use of the MUI library in coupling a neutronics code (DYn3D)
to a CFD code (Code Saturne). We demonstrate this coupling by simulating a simplified
molten salt fast nuclear reactor.

1 INTRODUCTION

As computer power advances, so too does our capacity for high fidelity simulation.
An ultimate goal for high fidelity simulation – one that is gaining traction within both
industry and academia – is digital twinning. A digital twin is a mapping of a physical
product or process to a digital representation. Sufficiently high fidelity in the simulation
is necessary to ensure the twin is representative of reality. Digital twinning promises to
revolutionise industry by enabling unprecedented insight into the whole life-cycle of the
product or process it represents, without the need for expensive (or potentially infeasi-
ble) experiments. Similarly, in science, a digital twin can be used to test the predicted
outcomes of scientific theories under exotic conditions, to ensure observations in the real
world match.

A key feature of a digital twin is the incorporation of multiple physical models within a
single simulation (multi-physics simulation). Similarly, different components of the model



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

may describe effects at vastly different scales (multi-scale simulation). When simulating
multi-physics or multi-scale problems in a High Performance Computing (HPC) envi-
ronment, care must be taken to ensure the scalability of the method. By adopting an
operator-splitting strategy, it is possible to decompose the complex multi-physics/scale
system into a series of interlinked sub-problems, which can then be tackled individually.
This has advantages over a monolithic coupling (where all governing equations are solved
simultaneously) since legacy codes, employing specialised numerical algorithms, can be
used with minimal effort, thereby preserving the many decades of effort that has gone
into developing robust, validated scientific software.

The challenge with this partitioned approach to coupling is the communication of data
from one code to the other in a way that does not introduce bottlenecks or significant
sources of error. There are a number of code coupling libraries available. Some libraries
provide a framework which controls the time-stepping and launch of individual solvers
[1, 2, 3, 4]. These framework approaches to coupling often require background daemon
processes to be running (to orchestrate the coupled simulation), as well as TCP ports
to be opened in order to allow the transfer of data. This can have implications on the
number of systems in which the coupler can run.

An alternative approach is to provide an MPI based communication interface, which
acts as a layer in which each application can deposit or retrieve data. This has the
advantage of being universal. That is, any code can be coupled to any other code, with
minimal effort, rather than a bespoke solution of coupling A to B. Additionally, the
interface approach should be expected to run on any HPC system, without the need for
installing daemon processes. For a review of current code coupling projects, the reader is
referred to the review chapter of Longshaw et al. [5].

In the sections that follow, we provide a brief overview of the ‘multiscale universal
interface’ (MUI) [6], which is an interface coupling library developed originally at Brown
University, but now is part of a collaboration between Brown University, IBM Research,
Lawrence Berkeley National Laboratory, and STFC. We test the scalability of the library
itself in transferring data and interpolating that data back to another solver. We will also
briefly demonstrate the application of the MUI in coupling a neutronics code to CFD.

2 The Multiscale Universal Interface (MUI)

The MUI1 [6] is a header only library written in C++. Wrappers are also available for
coupling codes written in other languages. The basic premise of the MUI is to provide
in interface which codes can push point data to. MUI works on point data in order to
maintain the universal nature of the coupling; all domain specific representations of the
data (for example on meshes) can be represented as a cloud of points. In this way, it
is not necessary to have detailed knowledge of the underlying data structures describing
mesh connectivity, for instance. The price to pay for this flexibility is increased cost in
the sampling (interpolation), for example using radial basis functions to recover a field

1The library is open source, distributed under the Apache license, and can be downloaded at
https://github.com/MxUI/MUI

2



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

Sheet1

Page 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

MPI tasks

S
p

e
e

d
u

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

1.2

MPI tasks

P
a

ra
ll
e

l 
E

ffi
c
ie

n
c
y

Sheet1

Page 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

MPI tasks

S
p

e
e

d
u

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

1.2

MPI tasks

P
a

ra
ll
e

l 
E

ffi
c
ie

n
c
y

Figure 1: Volumetric coupling with MUI. 200M data points transferred at each time-step. Speedup
(left) with ideal speedup in red. Parallel efficiency (right).

from a cloud of points.
Once these data points are all pushed, it is necessary to commit the data with a time-

stamp, which initiates the data transfer through MPI. Other solvers connected to the
interface can then fetch data at an arbitrary point in space and time (using interpolation
where the data does not exist). The API of MUI is very simple. Indeed, it is possible to
couple two solvers to one another by adding just a few lines of code to push, commit and
fetch.

A key strength of MUI is it is extensible. By taking advantage of C++ templates, the
library makes it simple to implement additional samplers to perform the interpolation. In
addition, MUI’s underlying communication layer has been abstracted such that different
communication protocols can be implemented with ease. It is possible to communicate
via TCP across the internet, or via standard I/O using files, or even through POSIX
shared memory directly. But more typically, the MPI Multiple Program Multiple Data
(MPMD) mode is used. This allows an arbitrary number of codes to communicate with
one another over MPI, and hence can be used on any HPC system with a working MPI
implementation that supports the MPMD paradigm.

3 Scalability testing

In order to test the scalability of the MUI library in isolation to that of any scientific
solver, a synthetic solver was written. This synthetic solver is given an embarrassingly
parallel workload, which is fixed, in terms of CPU hours, for a given problem size. Checks
were made to ensure this synthetic solver scales linearly to a minimum of ∼ 10, 000+
MPI tasks (in practice, it would be expected to scale to any arbitrary number of cores).
The workload was designed to be typical of MPI parallelised finite volume Computational
Fluid Dynamics solvers, such as Code Saturne or OpenFOAM. The workload size was set
to correspond broadly with our previous experience of Code Saturne. A value of 1× 10−4

CPU seconds / timestep / cell was used (i.e. the equivalent of 1 second per timestep at
10M cells and 1, 000 MPI tasks). Two instances of this synthetic solver were coupled to
one another.

Cases were run on the UK national supercomputing service ARCHER, which is a Cray

3



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

Sheet1

Page 1

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

MPI tasks

S
p

e
e

d
u

p

0 2000 4000 6000 8000 10000 12000 14000

0.75

0.8

0.85

0.9

0.95

1

1.05

MPI tasks

P
a

ra
ll
e

l 
E

ffi
c
ie

n
c
y

Sheet1

Page 1

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

MPI tasks

S
p

e
e

d
u

p

0 2000 4000 6000 8000 10000 12000 14000

0.75

0.8

0.85

0.9

0.95

1

1.05

MPI tasks

P
a

ra
ll
e

l 
E

ffi
c
ie

n
c
y

Figure 2: Interface coupling with MUI. 3M data points transferred at each time-step. Speedup (left)
with ideal speedup in red. Parallel efficiency (right).

XC30 supercomputer with 12-core Intel Ivy Bridge series processors.

3.1 Volumetric coupling

Figure 1 shows the parallel efficiency and speedup for a volumetric coupled case (typical
of neutronics-CFD coupling, amongst others) with 200M data points being transferred
(100M points in each solver). It can be seen the performance is broadly acceptable. To
understand the drop in efficiency at the highest core-counts considered, profiling of the
codes with CrayPat has been performed. Table 1 shows the bottleneck lies within MPI
itself; this is the unavoidable cost of communication. The cost of the MUI sampler (i.e.
interpolation) is fairly small (∼8%), even when processing a relatively large number of
data points.

Table 1: Profiling of MUI for the volumetric coupled case at maximum core-count.

Function % samples
MPI Test 23.3
MPI Recv 4.0

Synthetic Solver work 62.5
MUI sampler 7.6

3.2 Surface coupling

Figure 2 shows the coupling through a surface (typical of conjugate heat transfer, fluid
structure interaction, etc.). The mesh size is again 100M for each solver, but in this case,
the number of data points transferred is 3M (1.5M per solver). This is representative of
a surface coupling in which several variables are transmitted. It can be seen that, in this
case, the performance is better. The parallel efficiency is quite acceptable (above 85%)
up to 12, 288 MPI tasks. Table 2 shows the breakdown of time by function for the surface
coupled case. It can be seen the overhead of MUI interpolation is low (4%).

4



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

Neutronics

CFDCFD

Neutronics

tn tn+1

Te
m

pe
ra

tu
re

(tn ) 

Power(tn)

Te
m

pe
ra

tu
re

(tn+
1 ) 

Power(tn+1)

Te
m

pe
ra

tu
re

(tn-
1 ) 

Figure 3: Data communication pattern employed for neutronics-CFD coupling.

Table 2: Profiling of MUI for the surface coupled case at maximum core-count.

Function % samples
MPI Test 10.1
MPI Recv 0.1

MPI Barrier 6.8
Synthetic Solver work 77.7

MUI sampler 4.0

4 Neutronics & Computational Fluid Dynamics (CFD) Coupling

In neutronics coupling, thermal energy released by fission events is transferred to the
fluid. The resulting change in the fluid temperature in turn alters the transport of the
neutrons. This two-way coupling is depicted in Figure 3.

MUI is used to couple DYN3D [7, 8], a deterministic neutronics code, to Code Saturne
[9, 10], an open source finite volume CFD code. This coupling is achieved with minimal
intrusion into the codes (only a few extra lines of code in each case).

In order to verify the coupling was working as expected, a simple cylindrical reactor was
simulated. The geometry comprises a cylinder of diameter 1.06m and height 3.04m with
a uniform velocity inlet condition applied to the base of the cylinder and a zero gradient
outlet condition applied to the top. Meshes comprising approximately 8, 000 cells were
used for both the fluid and neutronics. Both codes were ran in serial for this test. The
thermal power of the neutronics was set to Q=3GW and an average temperature increase

5



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

Figure 4: Neutronics-CFD coupling.

of ∆T = 100K over the height was selected to determine the velocity condition via the
expression U = Q/(CpA∆T ) (Cp = specific heat capacity; A = cross-sectional area of the
inlet). The fluid is a molten salt in which fissile material is dissolved (LiF:PuF3:UF4). The
rate of the nuclear reactions is dependent on the density of the fluid and the probability
of a nuclear reaction both of which are dependent on the local temperature.

Figure 4 shows the thermal power density (MW m−3), temperature (K), and velocity
(m/s) (enhanced by buoyancy, due to the heating from the neutronics). The calculation
quickly reaches a steady state. The peak in power is shifted slightly lower than the centre
of the cylinder, which demonstrates the influence of temperature on the fluid density and
reaction probability as this peak would be located in the centre of the domain when these
effects are negligible.

5 Conclusion

In this paper, we have tested the scalability of the MUI library in isolation. It was
shown that the library scales well to at least O(104) MPI tasks. The MUI library is
therefore suitable for large scale coupled HPC multi-physics and multi-scale problems.

In cases where the scalability starts to tail off, profiling has shown that the bottleneck
lies within the message passing, rather than in the MUI library, and hence this bottleneck
would likely be present in any MPI based coupling effort, and solutions therefore need
to be considered from the perspective of solving difficult MPI communication patterns
introduced by coupling. The overall overhead of the MUI library itself (i.e. without MPI

6



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

overheads) has been shown to be a few % for these large scale coupled problems. This
overhead is predominantly in the sampler; since MUI operates on point clouds of data
(rather than mesh data), interpolation must be conducted in order to reconstruct data
on a remote mesh.

We have briefly demonstrated the use of the MUI in coupling a neutronics code to
a CFD solver. This simple test acts as a demonstration of MUI working in a practical
case. In the full talk, we will expand on these results further, and conduct a larger scale
simulation of a fuel assembly with coupled neutronics, conjugate heat transfer, and CFD.

6 Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for fi-
nancial support under program grant EP/N016602/1 and EPSRC grants EP/N033841/1
and EP/R001618/1. This work was further supported by the STFC Hartree Centre’s
Innovation Return on Research programme, funded by the Department for Business, En-
ergy & Industrial Strategy. The simulations on ARCHER were performed under the SLA
between EPSRC and STFC.

REFERENCES

[1] J. Borgdorff, M. Mamonski, B. Bosak, D. Groen, M.B. Belgacem, K. Kurowski,
and A.G. Hoekstra. Multiscale computing with the multiscale modeling library and
runtime environment. Procedia Computer Science, (2013) 18:10971105.

[2] V.S. Mahadevan, E. Merzari, T. Tautges, R. Jain, A. Obabko, M. Smith, and P. Fis-
cher. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor
design problems. Phil. Trans. R. Soc. A, (2014) 372(2021):20130381.

[3] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M.B. Belgacem, B. Chopard,
D. Groen, P.V. Coveney, and A.G. Hoekstra. Distributed multiscale computing with
MUSCLE 2, the multiscale coupling library and environment. Journal of Computa-
tional Science, (2014) 5(5):719731.

[4] W. Joppich and M. Kurschner. MpCCI - a tool for the simulation of coupled appli-
cations. Concurr. Comput.: Pract. Exper., (2006) 18(2):183192.

[5] S.M.Longshaw, A. Skillen, C. Moulinec, and D.R. Emerson. Code Coupling At Scale:
Towards The Digital Product. Advances in Parallel, Distributed, Grid and Cloud
Computing for Engineering (2017).

[6] Tang, Y.H., Kudo, S., Bian, X., Li, Z. and Karniadakis, G.E., Multiscale universal
interface: a concurrent framework for coupling heterogeneous solvers. Journal of
Computational Physics. (2015) 297:13–31.

[7] S. Kliem, Y. Bilodid, E. Fridman, S. Baier, A. Grahn, A. Gommlich, E. Nikitin, U.
Rohde. The reactor dynamics code DYN3D. Kerntechnik, 2016 81(2), 170172.

7



A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, D.R. Emerson

[8] U. Rohde, S. Kliem, U. Grundmann, S. Baier, Y. Bilodid, S. Duerigen, E. Fridman,
A. Gommlich, A. Grahn, L. Holt, Y. Kozmenkov, S. Mitta. The reactor dynamics
code DYN3D models, validation and applications. Progress in Nuclear Energy, 2016.
89, 170190.

[9] F. Archambeau, N., Mechitoua, M., Sakiz. Code Saturne: a finite volume code for
the computation of turbulent incompressible flows - Industrial Applications. Inter-
national Journal on Finite Volumes, 2004. 1, 1-62.

[10] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. Sunderland, J. Uribe. Optimizing
Code Saturne computations on Petascale systems. Computers and Fluids. 2011. 45,
103108.

8


