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Abstract. The Direct Simulation Monte Carlo (DSMC) method was proposed by Graeme 

Bird in 1970’s. It models the gas using simulation particles and samples the flow to obtain its 

macroscopic properties. At the beginning of 1980’s several experiments were conducted in 

Imperial College, London, in order to provide accurate data for the validation of DSMC 

codes. These experimental data have not been used for validation purposes for several years, 

although they have been conducted carefully so as to reduce the experimental error at its 

minimum. In this work we simulate one of these experiments using SPARTA, a modern 

DSMC kernel, with advanced molecular collisions model and we compare our results with 

older simulation results, as well as with the corresponding experimental data. 

 
 

1 INTRODUCTION 

The Direct Simulation Monte Carlo (DSMC) method was first proposed by Graeme Bird in 

1970’s [1]. When it was introduced it was not widely accepted by the scientific community 

but as the years passed the method evolved and became a suitable alternative to the use of 

Navier-Stokes equations mainly in rarefied gas flows. The DSMC method models the fluid 

using interacting simulation particles, each one of them representing a large number of real 

fluid particles. These simulation particles are placed inside the computational cells of the 

simulation domain and are characterized by their position, velocity and internal energy. Then, 

the simulation particles move with their assigned speeds and collide, while the computational 

cells are subsequently sampled to obtain the macroscopic properties of the flow.  

This method can be applied for several types of rarefied gas flows, usually in high Mach 

numbers. Due to the complications of the internal energy exchange when a collision occurs, 

the early molecular models, used in DSMC, were restricted to monoatomic gases. Despite the 

fact that various collision models have been later developed to deal with polyatomic gases, 

from empirical to fully quantum-mechanical ones, the problem of selecting one that is most-

appropriate for DSMC simulations still remains. The tradeoff between precision and 

efficiency should be considered wisely, since the algorithm uses many millions of such 
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simulation particles during a single run. 

During the 90’s the DSMC method was widely accepted and it was the dominant method 

for simulating rarefied gas flows [1]. At that period several researchers developed some of the 

current well known and widely-utilized parallel DSMC solvers. DAC (DSMC Analysis Code) 

was one of the first parallel codes, which later became the official DSMC code for NASA [2]. 

SMILE, developed by Ivanov et al. [3], became the official code for the Russian space 

agencies. MONACO was one of the first DSMC codes which employed a volume grid 

comprised of unstructured cells [4]; a volume grid with structured cells could also be used [4]. 

The same period two additional codes were developed, ICARUS [5] and MGDS [6]. ICARUS 

was developed in Sandia National Laboratories and was used in a wide variety of rarefied gas 

problems [5]. The MGDS code was developed at the University of Minnesota. The code uses 

a Cartesian grid but it performs fully automated adaptive mesh refinement during a DSMC 

simulation. The recent DSMC code SPARTA was developed in the Sandia National 

Laboratories [7]. This code makes use of the most recent grid adaption techniques, molecular 

models as well as parallelization techniques, which render the code probably the most 

computationally-efficient DSMC code currently available [7].  

In this work we examine one test case of a hollow cylinder, firstly introduced in 1983 by 

Davis et al. [8] and experimentally investigated in the Imperial College Hypersonic Nitrogen 

Wind tunnel. The collision models used at that time to simulate the corresponding test case 

were the variable-φ Morse potential [8], the hybrid Morse potential [8] and the inverse-power 

variable-φ [8]. 

2 COLLISION MODELING 

The collision models in the DSMC method are separated in two categories. Impulsive 

models, employing approximations to classical or quantum-mechanical representations of the 

collision, and phenomenological models, where local relaxation concepts are used to calculate 

the energy exchanges [9]. The first model introduced to the DSMC method was the hard 

sphere model [9, 10, 11]. This model treats molecules as hard spheres which collide (as 

shown in Figure 1) when their distance decreases to 

𝑟 =
1

2
(𝑑1 + 𝑑2) = 𝑑12 (1) 

where  𝑑1 and 𝑑2 are the diameters of the colliding molecules. Its main advantage is that it 

uses a finite cross-section defined by 

𝜎𝛵 = 𝜋𝑑12
2  (2) 

and an easy calculation of the collision. The scattering of hard sphere molecules is isotropic in 

the center-of-mass frame of reference. In other words, all directions are equally likely for 𝑐𝑟
∗, 

where  𝑐𝑟
∗ is the magnitude of particle’s velocity. In the hard sphere model, the viscosity and 

diffusion cross-sections are defined respectively as 

𝜎𝜇 =
2

3
𝜎𝛵 (3) 

and 

𝜎𝛭 = 𝜎𝛵 (4) 
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Figure 1: Collision geometry of the hard sphere model 

3.1 The Variable Hard Sphere model (VHS) 

The main characteristics of the hard sphere model are the finite cross‐section and the 

isotropic scattering in the center-of-mass frame of reference. Unfortunately, this scattering 

law is unrealistic. However, the main drawback of the hard sphere model is the resulting 

dynamic viscosity. According to Bird [1], a molecular model for rarefied gas flows should 

reproduce the dynamic viscosity of the real gas and its temperature dependence. The viscosity 

of the hard sphere model results to be proportional to the temperature to the power of 0.5, 

whereas real gases have powers of the order of 0.75. The main reason for this absence of 

accuracy is that the cross‐section of the particles is independent of the relative translational 

energy 

𝐸𝑡 =
1

2
𝑚𝑟𝑐𝑟

2. (5) 

The real cross-section depends on this relative velocity 𝑐𝑟. Because of the inertia, the change 

in the trajectories decreases when the relative velocity increases, so the cross-section must 

decrease when 𝑐𝑟 increases. A variable cross-section is thus required to match the power of 

0.75 that is a characteristic of real gases. This led to the variable hard sphere model (VHS) [9, 

10, 11]. In this model, the molecule is modeled as a hard sphere with a diameter 𝑑 that is a 

function of 𝑐𝑟, using an inverse power law 

𝑑 = 𝑑𝑟𝑒𝑓 (
𝑐𝑟,𝑟𝑒𝑓

𝑐𝑟

)
𝜉

 (6) 

where the subscript ref devotes reference values; 𝑑𝑟𝑒𝑓 corresponds to the effective diameter at 

relative speed 𝑐𝑟,𝑟𝑒𝑓 and 𝜉 is the VHS parameter depending on the particle species. For a 

particular gas the reference values are defined by the effective diameter at a particular 

temperature. In the VHS model the deflection angle is given by 

𝑥 = 2 cos−1
𝑏

𝑎
 (7) 

The VHS model leads to a temperature dependence of the coefficient of viscosity such that  

𝜇 ∝ 𝑇𝜔 (8) 
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where 𝛵 is the temperature and, 

 𝜔 =
1

2
+ 𝜉  (9) 

3.2 The Variable Soft Sphere model (VSS) 

The most recent popular model used in DSMC simulations is the Variable Soft Sphere 

model (VSS) [4]. In this model the deflection angle compared to the VHS is modified as 

𝑥 = 2 cos−1 ((
𝑏

𝑎
)

1/𝑎

) (10) 

where a is the VSS scattering parameter. The total collision cross-section of a variable soft 

sphere is given by 𝜎𝛵 = 𝜋𝑑2. As a result this leads to the following dynamic viscosity 

expression for a VSS gas, 

𝜇 =
5

16

(𝛼 + 1)(𝛼 + 2)√𝜋𝑚𝑘 (
4𝑘
𝑚

)
𝜉

𝑇
1
2

+𝜉

𝛼𝛤(4 − 𝜉)𝜎𝛵,𝑟𝑒𝑓𝑐𝑟,𝑟𝑒𝑓
2𝜉

 (11) 

Similarly to the VHS model, the viscosity is proportional to 𝑇
1

2
+𝜉

and the parameter ξ is 

chosen as in the VHS model. The diffusion coefficient in a VSS gas mixture is given [12] 

𝐷12 =
3

16

(𝑎12 + 1)√𝜋 (
2𝑘𝑇
𝑚𝑟

)

1
2

+𝜉12

𝛤(3 − 𝜉12)𝑛𝜎𝑇,𝑟𝑒𝑓,12𝑐𝑟,𝑟𝑒𝑓
2𝜉12

 
(12) 

For a simple gas with viscosity 𝜇𝑟𝑒𝑓 and self-diffusion coefficient 𝐷11,𝑟𝑒𝑓 at the reference 

temperature 𝑇𝑟𝑒𝑓 the effective diameters 𝑑 and 𝑑𝑟𝑒𝑓 based on the viscosity and diffusion are 

given [12] 

𝑑 = √
5

16

(𝑎 + 1)(𝑎 + 2)√𝑚/𝜋(𝑘𝑇𝑟𝑒𝑓)
𝜉+1/2

𝛼𝛤(4 − 𝜉)𝜇𝑟𝑒𝑓𝐸𝑡
𝜉

 (13) 

𝑑11 = √
3

8

(𝑎 + 1)(𝑘𝑇𝑟𝑒𝑓)
𝜉+1/2

𝛤(3 − 𝜉)√𝜋𝑚𝐷11,𝑟𝑒𝑓𝐸𝑡
𝜉

 (14) 

respectively. By requiring equity for the two diameters, α may be determined as 

𝑎 =
10𝜌𝐷11,𝑟𝑒𝑓

6(3 − 𝜉)𝜇𝑟𝑒𝑓 − 5𝜌𝐷11,𝑟𝑒𝑓

 (16) 

Consequently, the VSS model reflects the diffusion process more precisely than the VHS 

one and is thus more favorable for the analysis of diffusion phenomena. A limitation of the 

model is that constant values for α are generally only valid in a certain temperature range. It 

has to be noted that the VHS and VSS models both approximate the realistic inverse power 

law model. Details of the older models used in this work, namely the variable-φ Morse 
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potential, the hybrid Morse potential, and the inverse-power variable-φ, can be found in [13, 

14]. In brief these older models treat the individual collisions as inelastic with probability 𝜑 

or completely elastic with probability 1 − 𝜑. The constant 𝜑 is called the exchange restriction 

factor and ranges between 0.1 and 1. During an inelastic collision, the total energy is 

redistributed between the translational and rotational modes, according to probabilities 

derived from the equilibrium distribution [12]. 

4 THE HOLLOW CYLINDER EXPERIMENT 

In 1983, to access the accuracy of the variable-𝜑 and hybrid models in practical 

applications, comparisons have been carried-out between computational and experimental 

results; two body shapes were used, namely a hollow cylinder and a blunt cone; These 

particular body shapes have been chosen in order to minimize experimental error [8]. The 

method used in order to obtain the experimental results was the electron-beam fluorescence 

technique. This method avoids interference caused by physical probes, which, in rarefied 

gases, can be excessive [8]. In this work, only the hollow cylinder case will be considered. 

In the flow developed on the hollow cylinder we expect viscous effects to dominate. 

However, this type of shapes are dogged by undesirable three-dimensional flow effects, which 

in the rarefied regime can be troublesome [15]. The experiment was conducted in the Imperial 

College Nitrogen Wind Tunnel, which operates between Mach number 20 and 24 [8]. Mean 

free paths 𝜆∞ of 0.5 mm can be achieved within the wind tunnel [8]. The model was water 

cooled and constructed using tellurium-copper alloy [8]. The hollow cylinder has 44 mm 

diameter at the leading edge, while it is 150 mm long. The leading edge is sharp and 

chamfered at 10o at the inner surface, while the outer surface was given a slight taper of 1o 

[8]. This was necessary because the conicity of the undisturbed tunnel flow had a 1o outflow 

at the model’s leading edge [8]. The model’s geometry is presented in Figure 2. 

As far as the electron-beam is concerned, the method used was the one described in [16]. A 

beam of electrons was fired into the gas from a 30 kV source outside the tunnel. This caused a 

fluorescent glow, the intensity of which at points along the beam gave a measure of gas 

density [17]. On the surface of the hollow cylinder a thin layer of graphite was embedded, 

making possible to fire the beam directly at the model without the effect of an increased glow 

near the surface from the reflected particles. As mentioned in [8], a high-thermal conductivity 

adhesive was used to hold the graphite in place and a temperature rise of less than 0.3 K was 

estimated due to aerodynamic heating. 

The upstream boundary conditions were set in this work so as to match those measured in 

[8]. The boundary conditions and the DSMC code parameters can be found in Tables 1 and 2 

respectively. The DSMC code used in this work is SPARTA, developed in Sandia National 

Laboratories [7]. It is a high-efficiency parallel open-source DSMC code distributed under the 

terms of the GPL license. To run a simulation with SPARTA the corresponding parameters 

have to be defined first, i.e., the simulation box (computational domain), the grid, the internal 

boundaries (inside the simulation box), the particle species (e.g., oxygen, nitrogen, ions) and 

the initial population of the particles. For a two-dimensional run, the simulation box is defined 

by the coordinates of the boundaries; minimum and maximum coordinates in x- and y- axis. 

For a three-dimensional simulation the coordinates of two more boundaries have to be defined 

(including coordinates in z-axis). As far as the computational discretization is concerned, 
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SPARTA employs a hierarchical Cartesian grid strategy. The simulation domain is considered 

initially as a single grid cell (level 0). The cell is divided in Nx by Ny by Nz cells at level 1, 

while at next each one of these cells can be further divided into smaller ones at different 

levels. The properties of the particle species, such as their diameter and molecular weight, are 

acquired from an additional appropriately formatted file. Finally, the initial population of the 

particles is defined from the Fnum number, denoting the number of real particles represented 

by a single simulation particle. As far as initialization of the procedure is concerned, the 

corresponding velocities are retrieved from a Maxwellian speed distribution function [7]. 

The domain used in this simulation spans from -0.02 m to 0.15 m along the x-axis and 

from 0 m to 0.1 m along the r-axis. To divide the computational domain, a Cartesian grid was 

used, with 350 and 180 cells along the x- and r-axis respectively. Around the hollow cylinder 

geometry the grid cells were further refined to 10 by 10 cells. A detail of the aforementioned 

grid can be seen in Figure 2. In order for the results to be comparative to the older ones, since 

in [2] the number of particles used is not mentioned, in this work the number of particles were 

kept to the minimum number required for a successful DSMC simulation. It has to be noted 

that better results can be produced if the number of particles is increased. The simulation was 

performed on a DELLTM R815 Poweredge TM Server with four AMD OpteronTM 6380 16-core 

processors. The initial grid was decomposed and distributed to 60 cores and the simulation 

required approximately 5 days to complete. 

To speed-up the simulation, the recursive coordinate bisectioning method (RCB) was used, 

in which the processors are assigned compact clumps of grid cells [7]. To every cell a weight 

coefficient is assigned, hence, dynamic load balancing aims to assign equal total weights to all 

processors. This weight coefficient can be defined in various ways, e.g., if it is set equal to 

unity, each processor is assigned the same number of cells, while if it is set equal to the 

number of the included particles, the same number of particles is assigned to all the 

processors. 

 

Figure 2: DSMC grid detail 
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Table 1: Flow conditions 

𝐕∞ (𝐦 𝐬⁄ ) 2780 

𝛒∞ (𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝐦𝟑⁄ ) 3.192x1021 

𝐓∞ (𝐊) 95.6 

𝐓𝐰 (𝐊) 290 

Mean free path (𝝀∞) (mm) 0.33 

 

Table 2: DSMC code parameters 

𝐕∞ (𝐦 𝐬⁄ ) 2780 

𝑭𝒏𝒖𝒎 1057.48 

Timestep (s) 3x10-8 

Transient period (steps) 200,000 

Sampling period (steps) 50,000 

5 NUMERICAL RESULTS 

The SPARTA code simulated the flow in an axisymmetric domain by utilizing the VSS 

model. In this simulation the main objective was to calculate the flow density in different 

positions on the upper surface of the hollow cylinder. The measuring positions were defined 

according to [8] and can be seen in Figure 3. At this point it must be noted that the measuring 

took place along the whole length of the lines shown, from the surface of the cylinder up to 

the outside shock area. Furthermore, the simulation data, produced by the older models have 

been taken from [8]. In this work only the results for the VSS model were produced using the 

SPARTA kernel, and thus compared to the older models. The density contours computed by 

SPARTA are presented in Figure 4: the flow develops from a kinetic region around the 

cylinder’s leading edge to a fully shock and viscous layer downstream. The shock developed 

around the cylinder is produced by the displacement effect of the viscous layer. Thus, within 

it the density rises quickly and steeply to a peak value. This is because of the interference of 

the shock’s structure with the non-equilibrium viscous layer that exists in the space between 

the shock and the cylinder’s surface [8]. 

Furthermore, the measuring positions were defined as the ratio of the 𝑥 distance divided by 

the mean free path (𝑥 𝜆∞)⁄ . The 𝑦-axis (𝑟-axis) of the plots was defined in the same manner 

such as 𝑦 𝜆∞⁄ . The four measurement positions are summarized in Table 3. We can clearly 

observe that the model that gives better overall agreement is the newer VSS one, followed by 

the hybrid Morse, the variable-φ Morse and, finally, the inverse power variable-φ model. The 

results for the VSS model show that the flow develops fast with steep gradients and a strong 
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shock being close to the measured one. In contrast, the inverse variable-φ model accounts for 

a weaker shock and a slower developing flow. This was expected, because the VSS and the 

Morse potential models give a better prediction of viscosity over a wider range of 

temperatures. 

At position 1, which is close to the leading edge and is within the kinetic region of the 

flow, both VSS and variable-φ models are in very good agreement with the experimental 

results. As the flow develops further, on the cylinder’s external surface the differences 

between the models can be more clearly observed. Since the merged layer is essentially a 

matching between the strongly interacting viscous boundary layer generated by the particles 

reflected from the body and the developed shock, the conditions downstream of the shock are 

a very sensitive indicator [8]. In the second measurement position we can see that the VSS 

model provides a better agreement with the experimental data than the hybrid Morse potential 

one, especially at the peak density point. 

Finally, as we move forward to the third and fourth positions, shown in Figure 6a and 6b 

respectively, it can be observed that in the third position VSS and Hybrid Morse models 

produced close results. In addition, in the fourth position the VSS model slightly over-predicts 

the peak density point and the density after the peak point, whereas has a good agreement at 

the points before that. Since the number of particles used during the simulation is not 

mentioned in [8], in this work the simulation particles were kept around the minimum number 

of particles required for the model to run a successful simulation. As far as the third position 

is concerned, the VSS model produces a slightly better result at the density peak point, under-

predicts at the area outside the shock region and has a very good agreement with the Hybrid 

Morse model before the density peak point. 

 

Table 3: Measurement positions [8] 

𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 Number 
𝒙

𝝀∞
⁄  

𝟏 14.9 

2 44.6 

3 89.6 

4 140.0 
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Figure 3: Measurement positions 

 

 

Figure 4: Density contours 
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(a) (b) 

Figure 5: (a) Density plot for position 1; (b) Density plot for position 2 (points for variable-φ Morse, Hybrid 

Morse, and Inverse power variable-φ models were extracted from [8]) 

 

       (a)                                         (b) 

Figure 6: (a) Density plot for position 3; (b) Density plot for position 4 (points for variable-φ Morse, Hybrid 

Morse, and Inverse power variable-φ models were extracted from [8]) 

6 CONCLUSIONS 

In this work the DSMC code SPARTA was used to simulate a hypersonic rarefied gas flow 

test case. Three old DSMC collision models (variable-φ Morse potential, Hybrid Morse 

potential, and inverse-power variable-φ) were compared with a more recent one (VSS) against 

experimental results. Generally, a good agreement was observed between the Hybrid Morse 

potential and the VSS models, although the VSS one is expected to produce better results with 
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a higher number of particles than those used in this work. The hollow cylinder geometry is an 

axisymmetric equivalent of the flat plate geometry. The fastest model, as mentioned in [8], is 

the inverse-power variable-φ one, which provided tolerable results in comparison with the 

experimental data.  

As there is no evidence of the simulation time required we cannot say how long the 

original simulations required to reach a solution; the SPARTA code with the VSS model 

required 5 days in 60 cores; the VSS model is able to produce good results, although it is not a 

computationally cheap model. Further tests will be performed using more particles, as well as 

for lower densities, in order to demonstrate how the computational time varies with gas 

density. On-going work includes the comparison of the VHS model simulation results with 

the available experimental data, while other cases from the same batch of experiments are also 

under investigation. 
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