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In this work we explore the idea of a parameter free stabilisation method for hyperbolic
conservation laws. It is well known that for discontinuous solutions, non-physical oscilla-
tions will develop around the discontinuity. There are different methods to control these
oscillations, namely, adding a viscosity term to the partial differential equation or using
limiters to modify the solution.

In this work we show how to use a neural network to identify cells which are in need of
stabilisation, which is parameter free and constructed to be independent of the underlying
discretization scheme. We show the performance of this trouble cell indicator for a DG
scheme for scalar (linear advection) and systems of equations (Euler equations) in one
dimension.

1 Introduction

When dealing with nonlinear conservation laws (1), it is well known that discontinuous
solutions can emerge, even for smooth initial data. The numerical approximation of
discontinuous solutions will develop non-physical oscillations around the discontinuity,
which in turn will negatively impact the accuracy of the numerical scheme. There are
different methods to control these oscillations, namely, adding a viscous term as in (2) or
limiting the solution.

∂

∂t
u+∇ · f(u) = 0 (1)

∂

∂t
u+∇ · f(u) = ∇ · (ν(u)∇u) (2)

Neural networks gained new popularity due to the computational tractability of the back-
propagation algorithm, used for the learning of weights and biases in a deep neural net-
work. Furthermore, it has been empirically shown to generate robust models for classifica-
tion in many areas of applications [1, 2] and theoretically, to generate universal classifiers
and universal function approximators [3, 4, 5].
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We can write a stabilisation method as a function f that takes some local properties of
the solution (denoted by the map X(u(x))), and returns a modified solution value ũ(x),
which has some desired properties, e.g. non-oscillatory, maximum principle preserving.

f
(
u(x), X(u(x))

)
= ũ(x)

For example, in the context of finite volume schemes, we can write the Minmod limiter
as:

f((uj), X(uj)) = uj −minmod(X(uj)) = ũj

where the map X(uj) encodes local properties of the solution at u(xj). In this case,
X(uj) = (ūj − u+j−1/2,∆+ūj,∆

−ūj), where the usual notation applies: ū the cell average,

∆+ūj := uj+1 − uj, ∆−ūj := uj − uj−1 and u∗ = u(x∗), .

It is well known this clips the extrema for smooth solutions. To minimize this effect, one
can consider a TVD limiter [6]:

f(u(xj), X(u(xj)),M) = u(xj)− TVD(X(u(xj)),M) = ũj

where the map X(u(xj)) = (ūj − u+j−1/2,∆
+ūj,∆

−ūj) encodes local properties of the

solution at u(xj), and

TV D(X(uj),M) =

{
minmod(X(uj)) else
u(xj) if |ūj − u+j−1/2| ≤M(∆x)2,

where M is a user defined parameter and gives an estimate of the smoothness of the
solution u(x). It is to note that M can take a value in a large range of positive numbers,
and that it is usually a global quantity fixed in the beginning of the numerical experiment.
Thus, this can be a drawback if the solution has different smoothness properties across
the domain.

In the context of discontinuous Galerkin method, we can mention, among many, the high-
order limiter by [7], which does the limiting in a hierarchical manner, relying on the modal
representation of the solution u(x). This does not clip the solution maxima, thus having
desirable properties, but it is formulated specifically for the modal discontinuous Galerkin
method.

In this work we learn a data-driven stabilisation function f(X(u(x))) which doesn’t re-
quire user input, and explicitly show to integrate such stabilisation method with a work-
ing 1-dimensional computational fluid dynamics (CFD) code. Furthermore, we design
this stabilisation function with the intent to be independent of the underlying numerical
scheme, so the input required is formulated by nodal values of the solution and finite
differences.

The paper is structured as follows: in section 2 the construction of the dataset is described,
the methodology in presented in section 3, numerical results are shown in section 4 and
conclusions in chapter 5.

In the spirit of open science, all the codes and trained models are made available in a
public repository [8].
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2 Dataset

The dataset is an integral part of data-driven analysis. It contains the data for which we
want to learn a mapping for. For our task, to learn a function which indicates whether a
discontinuity is present in the solution or not, our data is the set containing N samples
{Xi, yi}Ni=1, where Xi denotes some local properties of the solution ui (features) and yi
(labels) indicates the existence (or not) of a discontinuity.

The dataset is generated by performing many runs on a 1-dimensional discontinuous
Galerkin code solving the advection equation for different initial conditions, orders and
mesh sizes (see table 1), and the labels are obtained by running a high-order limiter for
discontinuous Galerkin [7] which does hierarchical limiting of the modes.

The interesting point of generating the labels using this is that we can learn the black
box function of a limiter which is specific to a particular framework (in this case, discon-
tinuous Galerkin) and integrate this with other numerical methods. Furthermore, the cell
which are flagged by the high-order limiter are similar to a well tuned TVD limiter for
approximation orders higher than 2.

Initial condition sin(2πx),

{
4 0.25 ≤ x ≤ 0.75
1 otherwise

,

{
1
2

sin(2πx) x ≤ 0.3
0 otherwise

x ∈ [0, 1]

Mesh size 8, 16, 32, 64, 128
Order 2, 3

Table 1: Runs used to generate the dataset.

2.1 Features

The features Xi are the different quantities used to describe the local solution ui. For
the sake of generalisation, we choose features which are readily available in different
numerical methods, such as: cell mean value, values at interface, divided differences
between neighbours, etc. The complete description of the features can be found in table
2.

Of course, one could consider features which are specific for a particular method, e.g. the
modes of the solution when using a discontinuous Galerkin method, or the smoothness
parameters for a WENO method.

3 Method

In the following section, we focus on the three main aspects of this method:

1. the set-up of the learning algorithm;

2. the integration of a trained model with an existing CFD code;

3. the performance measures used to validate this method.

For the specific implementation details, please refer to the github repository [8].
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ID Feature Name Description
1 h cell width
2 ūi average value of solution at cell i
3 ūi+1 average value of solution at cell i+ 1
4 ūi−1 average value of solution at cell i− 1
5 u+

i− 1
2

value of solution at interface i− 1/2 reconstructed in cell i

6 u−
i+ 1

2

value of solution at interface i+ 1/2 reconstructed in cell i

7 u−
i− 1

2

value of solution at interface i− 1/2 reconstructed at cell i− 1

8 u+
i+ 1

2

value of solution at interface i+ 1 reconstructed at cell i+ 1

9 dui+1 divided difference between ūi and ūi+1, divided by h
10 dui−1 divided difference between ūi and ūi−1, divided by h
11 dui divided difference between ūi+1 and ūi−1, divided by 2h

Table 2: Features table

3.1 Training a neural network offline

In this section we describe the details of the learning algorithm. We use a multilayer
Perceptron neural network. For a general comprehensive introduction of neural networks
one can refer to [9].

We wish to learn a map f : X → Y , where X denotes an arbitrary set containing
examples that we wish to label with possible outcomes Y . The task at hand is a binary
classification (i.e. does this cell require stabilisation?), thus f will be our binary classifier
and Y = {0, 1}.
We choose f to be defined by the composition of a sequence of functions g1, g2, ...gn,
yielding

f(x) = gn(...g2(g1(x))).

This is known as a deep neural network. There are many different classifiers which can
be used, but it has been shown that deep neural networks perform well on a variety of
classification tasks, in particular when the classification plane is nonlinear [9].

Each function gi(wi, bi, hi(·)) is parametrized by a matrix wi, called weights, a vector
bi called bias and an activation function hi(·) which introduces the non-linearity on the
neural network.

These parameters are tuned through a loss function L(x), which measures how well the
mapping f performs on a given dataset D, using the gradient descent algorithm and
back-propagation.

The gradient descent [10] is a first-order iterative optimization algorithm for finding the
minimum of a function (in this case, the loss function L(x)), relying on the fact that for
small enough η:

an+1 = an − η∇L(an)

then L(an+1) ≤ L(an), for a defined and differentiable loss function L. The size of the
update on the opposite direction of the steepest gradient is tuned through η, the learning
rate. Instead of using a global learning rate, we use the Adam algorithm [11] to adaptively
estimate the update for each parameter (in this case, for the weights and biases), which
uses information from the first and second moments of the gradient (with respect to
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parameter a) ∇L(an). The update follows:

an+1 = an − α
m̂n√
v̂n + ε

,

where α denotes the stepsize, typically set to α = 0.001, m̂t denotes the corrected moving
first moment of the gradient, v̂t the corrected moving second moment of the gradient (both
with respect to parameter a) and ε a small value to avoid division by zero. For the full
algorithm, please refer to appendix B.

Finally, the back-propagation algorithm is used, which gives a rule to update the different
wi and bi in order to minimize the loss function [12].

Finally, two different loss functions are used:

• cross-entropy:

L(D) = − 1

N

N∑
i

yi log(p̂i) + (1− yi) log(1− p̂i). (3)

• weighted cross-entropy:

L(D) = − 1

N

N∑
i

yi log(p̂i)ω + (1− yi) log(1− p̂i). (4)

One particular property of our problem is that it is expected that there will be a class
imbalance on the dataset (both during the training phase and prediction phase). In par-
ticular, it is more likely to find cells which are in no need for stabilisation than ones which
are in need for stabilisation. Furthermore, the cost of overlimiting is less than the cost of
missing a cell that needs limiting, as it might lead to unphysical results and potentially
crash the code. To bias the learning towards predicting the less represented class (need-
ing stabilisation) better, it is common practice to use a weighted cost function[13]. The
asymmetry in the loss function is added through the coefficient ω.

Finally, we specify the activation functions used: for the hidden layers 1, ..., n − 1 a
Rectified Linear Unit (ReLU) is used:

h(x) = max(0, x).

Although there exist more sophisticated activation functions, typically modifications to
ReLU, e.g. leaky ReLU, Parametric ReLU or Randomised leaky ReLU, these require fur-
ther parameter estimation, add at least one more dependence to the saved model, and the
empirical improvement on the performance is not extremely significant [14]. Furthermore,
there are theoretical predictions when using ReLU as an activation function, which we
make use in the following section to roughly estimate the size of the neural network.

For the last layer (output layer), a sigmoid function is used:

h(x) =
1

1 + exp−x
,

in order to attain a value that can be interpreted as a probability.
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3.1.1 Architecture

In this work we trained a fully connected, multi-layer Perceptron (MLP). We follow the
results in [15], which establish lower bounds for the number of required non-zero weights
and layers necessary for a MLP using ReLU activation functions used, to approximate
the classification maps f : [−1/2, 1/2]d → Y :

f =
∑
k≤N

ckXKk
,

where f is a piecewise smooth function with N ”pieces”. Here each XKk
denotes an

indicator function:

XKk
(x) =

{
1, if x ∈ Kk

0, if x 6∈ Kk
(x, t) ∈ [0, 1]× R+, (5)

for a compact set Kk ⊂ [−1/2, 1/2]d with ∂Kk ∈ Cβ, the set of β times differentiable
curves, for all k ≤ N . Namely, β controls the regularity of the boundary of the set Kk, d
denotes the dimension of the feature map.

Theorem 4.2 [15] provides the following lower bound for the minimal number of nonzero
weights that a neural network Rρ(Φ

f
ε ) needs to have in order to approximate any function

belonging to a function class C ∈ L2([−1/2, 1/2]d), up to an L2 error of at most ε:

#Weights ≥ C · ε−2(d−1)/β/ log2

(
1

ε

)
,

where C = C(d, β,B,C0) is a constant, B,C0 > 0, B is an upper bound on the supremum
norm of Rρ(Φ

f
ε ) and C0 is related to with the maximum bits needed to encode a weight

of the network.

And Theorem 3.5 [15] provides approximation rates for piecewise constant functions. In
particular, the number of required layers depends on the dimension d and for the regularity
parameter β:

#Layers ≥ c′ log2(2 + β) · (1 + β/d),

where c′ = c′(d, r, β, B) > 0.

Making optimistic assumptions about the classification function and the desired approx-
imation accuracy (in L2 norm), we can bound, from below, the number of necessary
neurons and layers as (non-zero) #Weights ≈ 6.3×107 and #Layers ≈ 2.4, respectively,
for d = 11, β = 2 and ε = 0.10. As these are lower bounds and C, c′ are unspecified,
we fix the number of neurons to be at least 228 which is distributed across the varying
number of layers. In appendix A, the explicit architectures are detailed.

3.2 Integration of the method on a CFD code

We assume that exists a neural network which has been trained offline. Each layer can
be fully characterized by the following information:

gi(wi, bi, hi(·))

where hi denotes the activation function, wi the weights matrix and bi a bias vector.
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Thus, there are two routines necessary to integrate a trained neural network with an
existing code:

1. Generation of features: given the local solution u, generate the feature quantities
X(u) as specified on section 2.

2. Prediction routine: Given the features X(u), it is necessary to evaluate the func-
tion f . As denoted previously, a layer gi is fully specified by parameters wi, bi, hi(·).
Once the neural network has been trained offline, the weights and biases can be
loaded onto the CFD code. What remains to be implemented are the activation
functions for the hidden layers and the activation function for the output layer in
order to evaluate f at some given input.

Then, the stabilisation algorithm reads:

Data: solution at cell i, ui
Result: stabilised solution ũi
X = generateFeatures(ui);
label = predict(X);
if label = 1 then

ũi = stabilisation(ui);
else

ũi = ui;
end

Algorithm 1: Limiting

For systems, we tried both limiting on conservative variables and primitive variables.
Each variable is limited independently.

3.3 Measuring performance of model

In this work we use two sets of performance measures, namely:

1. Label prediction measures

2. L1-norm of the solution

For the first set of measures, we can use typical metrics used in computational statistics
and machine learning communities:

tp+ tn

tp+ tn+ fp+ fn
(accuracy)

tp

tp+ fn
(recall)

tp

tp+ fp
(precision)

where tp is the number of correctly predicted positive labels, tn the number of correctly
predicted negative labels, fp the number of incorrectly predicted positive labels and fn
the number of incorrectly predicted negative labels.
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Model Description Accuracy (%) Recall (%) Precision (%)
Random randomly guessing 50.00 θa 50.00
Model 1 2 hidden layers (HL) 77.96 69.17 24.13
Model 2 3 HL 95.52 80.66 84.19
Model 3 4 HL 95.15 79.26 82.67
Model 4 5 HL 95.14 81.71 81.01
Model 5 5 HL + weighted loss (ω = 5) 95.67 79.05 86.39

aθ denotes the estimate of the ratio between positive and negative labels, which could be measured
empirically through the training data. Empirically, we have θ̂ = 0.1

It is important to consider recall and precision because the distribution of labels can be
imbalanced. If only accuracy is measured, it is possible to attain a high accuracy by solely
predicting the majority label.

For the second set of measures, we consider the L1-norm because it is the relevant measure
for a CFD code and we can study the effect of this method on the empirical error of the
numerical solution.

3.4 Implementation details

The neural network was set up and trained using Tensorflow with a python API. The
numerical solver is written in Fortran, based on [16].

4 Numerical experiments

This section is split in two parts: in subsection 4.1, we show the performance of the trained
neural network on an unseen validation set, and measure the performance in terms of the
accuracy, recall and precision. The second part (subsections 4.2 and 4.3), we choose the
model that performed the best and we integrate it with a CFD code. The model runs
as a blackbox limiter (denoted as NN) and we compare its performance to the Minmod
limiter and hierarchical high order limiter (denoted as HIO) through the L1 error norm.
We also compare the performance of this limiter with the optimally tuned TVD limiter,
although we do not present convergence rates of the TVD limiter due to the dependency
on the M parameter. We perform some tests for the linear advection equation and Euler
system of equations. The initial conditions are chosen as different from the ones used for
the training.

4.1 Detection rate

We measure the performance of several models on a unseen validation set. We measure
whether the models are able to predict the right labels which are assigned from hand
tuned limiters.

On an unseen validation set, a subset of the dataset generated as describes in section 2.

Going forward, we select model 5 as it performs well and because the resulting size of the
weights matrices per layer is significantly smaller than model 3. It is debatable whether
the differences between models 3, 4 and 5 are statistically significant.
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4.2 Linear Advection

Consider a linear advection equation with a ∈ R:

∂

∂t
u+ a

∂

∂x
u = 0 (6)

and periodic boundary conditions.

4.2.1 Gaussian pulse

We consider the following initial condition:

u0(x) = 1 + 3 exp(−100(x− 0.5)2) (x, t) ∈ [0, 1]× R+ (7)

with advection velocity a = 1.

The convergence is shown in tables 3 and 4 after one full crossing for orders 2 and 3.
Furthermore, in figure 1 we show how the maxima is clipped using different methods for
a grid size of N = 40. We note that the Minmod limiter clips the maximum value of the
solution, whereas a well tuned TVD limiter does not. The hierarchical high order limiter
(denoted as HIO) throughout this section behaves as Minmod for the second order case,
but for third order it does not limit the solution. The learned limiter (denoted as NN)
behaves similarly for both orders, but it is to note that it seems to outperform the HIO
limiter for the second order case. It makes sense that the performance does not depend
(as much as the HIO limiter) on the order of the method, as we train the algorithm with
only nodal information.

N No Limiter MinMod HIO NN

10 0.197729 | 0.4 0.389622 | 0.2 0.389622 | 0.2 0.353091 | 0.2
20 0.055585 | 1.8 0.142990 | 1.4 0.142990 | 1.4 0.107405 | 1.7
40 0.008065 | 2.3 0.038609 | 1.7 0.038609 | 1.7 0.017078 | 2.2
100 0.001181 | 2.3 0.005105 | 1.9 0.005105 | 1.9 0.002031 | 2.3

Table 3: L1 error for one crossing of the Gaussian pulse 7 using different limiters for order 2.

N No Limiter MinMod HIO NN

10 0.010765 | 1.7 0.392397 | 0.2 0.224807 | 0.3 0.354754 | 0.2
20 0.003666 | 2.8 0.143413 | 1.5 0.007157 | 5.0 0.107731 | 1.7
40 0.000192 | 2.2 0.038610 | 1.7 0.002575 | 3.2 0.017128 | 2.2
100 0.000078 | 2.6 0.004917 | 1.9 0.000781 | 2.3 0.001750 | 2.3

Table 4: L1 error for one crossing of the Gaussian pulse 7 using different limiters for order 3.

4.2.2 Smooth and square hat

Next, we consider the following initial conditions, which contain a smooth Gaussian pulse
and a hat function:
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Figure 1: Maxima clipping of the Gaussian pulse 7 after one full crossing for approximation order of 2
(left) and 3 (right) for grid size N = 40.

u0(x) =

{
2, |x− 0.7| ≤ 0.1

1 + exp
(
− (x−0.25)2

2×0.052

)
, otherwise

(x, t) ∈ [0, 1]× R+, (8)

again with advection velocity a = 1.

N No Limiter MinMod HIO NN

10 0.164609 | 0.4 0.333485 | 0.2 0.333485 | 0.2 0.297200 | 0.3
20 0.100032 | 0.7 0.170726 | 1.0 0.170726 | 1.0 0.129082 | 1.2
40 0.053035 | 0.8 0.062677 | 1.2 0.062677 | 1.2 0.065400 | 1.1
80 0.029132 | 0.8 0.028890 | 1.2 0.028890 | 1.2 0.032303 | 1.1
100 0.024246 | 0.8 0.023000 | 1.2 0.023000 | 1.2 0.026439 | 1.0

Table 5: L1 error for one crossing of the Gaussian and hat pulses 8 using different limiters for order 2.

N No Limiter MinMod HIO NN

10 0.054616 | 0.6 0.339167 | 0.2 0.307901 | 0.3 0.302808 | 0.3
20 0.032699 | 0.7 0.172127 | 1.0 0.075238 | 2.0 0.130308 | 1.2
40 0.022798 | 0.6 0.063178 | 1.2 0.033082 | 1.6 0.065783 | 1.1
80 0.013853 | 0.6 0.029148 | 1.2 0.017352 | 1.4 0.032443 | 1.1
100 0.011725 | 0.7 0.023202 | 1.2 0.014379 | 1.3 0.026401 | 1.0

Table 6: L1 error for one crossing of the Gaussian and hat pulses 8 using different limiters for order 3.

4.3 Euler equation

Now we consider the 1-dimensional Euler equations, which describe the behavior of an
inviscid flow. This system of equations describe the evolution of a density ρ, a velocity u,
a pressure p and total energy E.

∂

∂t
ρ+

∂

∂x
(ρu) = 0 (9)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0 (10)

∂

∂t
E +

∂

∂x
((E + p)u) = 0. (11)
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Figure 2: Maxima clipping of the Gaussian and hat pulses 8 after one full crossing for approximation
order of 2 (left) and 3 (right) for grid size N = 40.
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Figure 3: Density and velocity fields for the Sod shock tube 12 at T = 0.1 for grid size N = 64 and
approximation order 2.

The system is closed equation of state for an ideal gas:

ρe = p/(γ − 1),

where e = E − 1
2
ρu2 is the internal energy.

4.3.1 Sod shock tube

We consider the standard Sod shock tube test, given by the initial conditions:

(ρ, v, p)(x, 0) =

{
(1.0, 0.0, 1.0) 0.0 < x ≤ 0.5
(0.125, 0.0, 0.1) 0.5 < x < 1.0

(x, t) ∈ [0, 1]× [0.0, 0.1], (12)

and γ = 1.4 and gradient free boundary conditions.

In figure 3 we show the comparison between different limiters at T = 0.1. We show the
performance of a tuned TVD limiter and the NN limiter. We note that for the density field
(left panel in figure 4.3.1), the solution produced by the NN limiter seems oscillation free
and sharper than the solution by the TVD limiter, but for the velocity field (right panel
in figure 4.3.1) some oscillations were not corrected enough, and clearly the behaviour of
the TVD limiter is more desirable. This could be due to the fact that the shock detection
is done over the conserved variables. This could be improved by performing the shock
detection over the characteristic variables.
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Figure 4: Density, velocity and pressure fields of the blast wave interaction 13 at T = 0.038 for grid size
N = 100 and approximation order 2.
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Figure 5: Density, velocity and pressure fields of the Blast Wave interaction at T = 0.038 for grid size
N = 100 and approximation order 3.

4.3.2 Blast wave

Next we consider the interacting blast waves test, given by the initial conditions:

(ρ, v, p)(x, 0) =


(1.0, 0.0, 1000.0) 0.0 < x ≤ 0.1
(1.0, 0.0, 0.01) 0.1 < x ≤ 0.9
(1.0, 0.0, 100.0) 0.9 < x < 1.0

(x, t) ∈ [0, 1]× [0.0, 0.038] (13)

and γ = 1.4 and reflexive boundary conditions.

In figures 4 and 5 we show the comparison between different limiters at T = 0.038 for
different orders. The unlimited solution is not shown because the code crashes due to the
pressure becoming negative shortly after the start of the simulation for orders higher than
1. The dashed line denotes a high resolution solution, run with N = 1000, third order
with the HIO limiter. We can note that the NN limiter is not as good at suppressing
oscillations as Minmod and the HIO limiter, but stabilises the solution enough to finish
the run. Furthermore, we note that the peak is better preserved, which means that it
looks like the limiting is less strong than Minmod and the HIO limiter.

5 Conclusion

The purpose of this work was primarily to demonstrate the potential of using learning
algorithms in CFD codes. In particular, we show the different stages necessary to train a
blackbox limiter that can be integrated in different codes. To this end, we described how
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to construct a dataset for the training phase, how to train a multi-layer Perceptron that
detects shocks and how to integrate the trained model with a 1-dimensional discontinuous
Galerkin code to serve as a limiter. Then, we performed the usual validation of the limiter
in the context of scalar and systems of equations.

An idea that we tested in this paper was training a black box algorithm that mimics a
limiter designed for a particular numerical scheme. In particular, we used the cells flagged
by the hierarchical high order limiter [7] for discontinuous Galerkin method, which relies
on the fact that the high order coefficients of the Legendre basis functions serve as proxies
to the high order derivatives of the solution to perform the limiting, and we learn the
mapping which using only nodal values of the solution as described in table 2. This is
hopefully a step towards the development of algorithms which could be numerical scheme
independent.

We showed empirically that in principle it’s possible to learn a parameter free limiter
(after the training phase) from data. While the performance for the seen functions is
relatively good (as observed in 4.1), the on-the-fly performance could be improved with
the careful design of the loss function during the training phase (for example, to include
information on the maximum preserving principle). For the smooth case, we observed
that this limiter was by far less diffuse than the minmod limiter. Certain oscillations
were corrected but there were other oscillations which were not stabilized enough. When
applied to a system of equations, we observed that this method still produced sensible
results, slightly better than the unlimited version.

It is to note that the training set used was extremely reduced - we only used data from
solving the linear advection equation with different initial conditions and varying mesh
sizes. Even so, the direct application of this model to unseen initial conditions, to the
Euler system and to differing grid sizes was somewhat successful. In a realistic setting,
one would use a much more complete dataset.

Of course one must mention caveats in this type of work. For once, there is overhead
when using the neural network limiter, as one can observe in table 7, where the average
wall-clock time per timestep using with different limiters is shown. This can be improved
significantly by using an efficient matrix multiplication routine to evaluate the prediction
for each cell. A more concerning problem is the lack of theoretical guarantees for this
type of black-box limiter. For example, additional work must be done to build limiters
which are maximum principle preserving. These properties can be added by designing
an appropriate loss function. In addition, work must be done for the extension to multi-
dimensional problems.

Solver N = 8 N = 16 N = 32

No limiter 8.15× 10−5 8.61× 10−5 1.29× 10−4

TVD limiter 8.70× 10−5 1.17× 10−4 1.74× 10−4

NN limiter 8.22× 10−3 1.68× 10−2 3.20× 10−2

Table 7: Average time per iteration (s) for sine advection case

While this work is a proof-of-concept, it is our belief that these ideas can be applied
to other problems which depend on certain local properties of the numerical solution,
ultimately contributing towards Computational Fluid Dynamics (CFD) codes which are
robust to different initial conditions and that require less parameter tuning to produce
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readily usable results.

A Appendix: MLP architectures

Here we detail the architectures tested in this work. For this work we found the lower
bound (228) for the number of weights and fixed the activation functions to be ReLU (as
detailed in section 3.1.1). What we observed was that this quantity was not producing
very good models. Thus, we used (232) non-zero weights, which presupposes a constant C
of order 10. It is left to specify the distribution of the weights across the different layers.
The number of weights and neurons is related by multiplying d through the number of
neurons per layers to get the total number of weights.

Model Layers Neurons per layer Description

Model 1 2 16384:163841 —
Model 2 3 2048:1024:512 —
Model 3 4 512:256:256:128 —
Model 4 5 256:128:64:64:32 —
Model 5 5 256:128:64:64:32 with weighted loss ω = 5.

Table 8: Architectures

B Appendix: Adam algorithm

The Adam algorithm [11] is used for stochastic optimisation. The algorithm updates
exponential moving averages of the gradient (mt) and the squared gradients (vt) where the
hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay of these moving averages.
These moving averages are estimates of the first and second moment (uncentered variance)
of the gradient. Because the quantities m0, v0 are initialised at 0, they are biased towards
zero (in particular if the decaying rates β1 and β2 are small). Hence, there is an additional
correction leading to the unbiased quantities m̂t and v̂t. The algorithm is detailed below.

Data: α: stepsize, β1, β2 ∈ [0, 1]: exponential decay rates for the moment estimates,
f(θ): stochastic objective function with parameters θ, θ0 : initial parameter
vector

Result: θt (resulting parameters)
m0 = 0 (initialise 1st moment vector);
v0 = 0 (initialise 2nd moment vector);
t = 0 (initialise timestep);
while θt not converged do

t = t+ 1;
gt = ∇θft(θt−1) (Get gradients w.r.t stochastic objective at stepsize t);
mt = β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate);
vt = β2 · vt−1 + (1− β2) · g2t (Update biased second moment estimate);
m̂t = mt/(1− βt1) (Biased corrected first moment estimate);
v̂t = vt/(1− βt2) (Biased corrected second raw moment estimate);

θt = θt−1 − α · m̂t/
√
v̂t + ε (Update parameters);

end
Algorithm 2: Adam algorithm
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