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Summary: Assessment of leakage performance is a fundamental aspect in the design of 

elastomeric fluid seals. The key characteristic of the leakage performance is the blow-off 

pressure, which when it is reach, the leakage rate through the seal is no longer acceptable and 

the seal no longer performs its function. Prediction of the blow-off pressure under different 

operating conditions such as the amount of preload, pressure build-up rate, etc., would 

facilitate improvement in the seal design methodology and would allow subsequent efficient 

optimisation of a seal design. For an accurate prediction of the blow-off pressure, any 

computational methodology should ideally include Fluid-Structure Interaction (FSI), since the 

geometrical disposition of the seal, its deformation and its contact conditions with respect to 

the main structure are adversely affected by the fluid pressure. Two FSI single-solver 

techniques, available in the commercial FE-code Abaqus, are investigated in this study with 

application to the simulation of leakage. The first technique is Pressure Penetration 

Interaction, available for general structural analysis using a static implicit solver, which 

propagates the applied fluid pressure into contact openings. The second, more advanced FSI 

technique, is the Coupled Eulerian-Lagrangian (CEL) approach which is available for coupled 

fluid-structural analysis in a dynamic explicit solver. The CEL approach is the most versatile 

and can be applied to a wide range of FSI problems, e.g. simulation of a seal blow-off and fluid 

leakage through the resulting contact gap [1]. When trying to develop the art and science 

involved in the simulation of leakage phenomenon, a robust FSI technique has the potential to 

be a critically important design tool which could be applied to a wide range of more complex 

sealing geometries. This paper addresses a typical hollow rubber seal and investigates how the 

amount of initial compression and initial stretching affect the leak tightness of the seal using 

two different FSI techniques. The complexity of problem setup, the efficiency of the solver and 

the robustness of obtained solution will be compared and discussed. 
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1 INTRODUCTION 

1.1 Problem introduction 

Accurate simulation of fluid structure interaction is a long running problem in the world of 

fluid sealing. This report will attempt to address the difficulties associated with this type of 

problem by employing the coupled Eulerian-Lagrangian (CEL) approach to facilitate 

computationally efficient, and accurate, prediction of the blow off pressure for a seal of typical 

geometry [2] and material properties. 

The simulation work was completed using ABAQUS 2018, the CEL approach provided in 

this package allows for simultaneous computation of the fluid, and structure interaction effects, 

within one environment. This technique is a more advanced version of the arbitrary Eulerian-

Lagrangian (AEL) [3] approach which utilises adaptive re-meshing and transfers results taken 

at the solid boundary of a fluid problem, to the solid boundary of a solid problem, for each 

individual time step. This transferring of results leads to interpolation between the time steps 

which can give rise to an erroneous result. By using the CEL technique these errors can be 

eliminated, making it an attractive choice. However, it is not without its disadvantages; the 

improved accuracy over AEL comes with a substantial increase in computational time. 

The geometry of the seal and the corresponding pressurisation model have been purposefully 

kept simple to increase computational efficiency and aid in the speed of analysis. This study is 

interested in evaluating the performance of the technique and not the specific seal to which it is 

applied. 

In order to gain a comprehensive understanding of the performance of the technique, a 

sensitivity study was conducted for the compression of the typical seal geometry, therefore the 

shape of the seal will not be varied during the various analysis attempts. Investigated parameters 

are the level of circumferential pre-stretch and radial compression. These different 

configurations were pressurised by a solid piston which pushed a body of fluid. The 

corresponding leakage pressures for different compression levels have been obtained, and 

evaluated to determine if the CEL technique provides effective and robust results. 

1.2 Background 

More traditional FEA simulations use a purely Lagrangian mesh to monitor the deformation 

of solids from their reference position. This approach leads to inaccuracies, when applied to 

problems subject to large deformations, due to distortion of the shape of individual elements. 

As the simulation considered in this project is expected to undergo severe deformation of the 

fluid as it deforms to the shape of the solid seal, a Lagrangian mesh for this component is not 

appropriate. 

The coupled Eulerian-Lagrangian approach is extremely useful for simulation of multi-

physics problems in which there are large deformation of the fluid-solid interface. This is due 

to the ability to track the position of the fluid when the solid boundary undergoes large 

deformations, without creating severe distortion of the mesh associated with the fluid domain. 

Having a fixed (Eulerian) mesh allows the fluid to move freely through the stationary mesh and 

make contact with solid boundaries. Further benefits of using an Eulerian mesh for the fluid 

domain is the capability for the creation and vanishing of the free boundary contacts in a 

realistic manner. Coupling this behaviour, with that of the seal finite elements, creates an 
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accurate simulation of fluid structure interaction. 

As the model is arranged with the Eulerian domain extending further than the seal (see figure 

2) the fluid can be allowed to deform, pressurise the seal and simulate a leak past the sealing 

surface into the free space. Due to the possibility of seal re-contact with the counter surface 

after leakage, CEL allows for the prediction of the sustained pressure during leakage and the 

secondary sealing pressure which defines the seal’s ability to recover after unloading – 

phenomena that can only be investigated with this technique or experimental methods. 

 

1.3 Limitations 

 A significant limitation of the CEL approach for fluid leakage problems is the time taken to 

complete the analysis. CEL is only available as a dynamic explicit analysis, therefore, in the 

case of this study, the computation time for a three second simulation is of the order of 480 

CPU hours (120 hours on a typical 4 core processor). For this reason, the mesh of the fluid 

element and the solid boundaries are kept reasonably coarse in an effort to reduce the solution 

time. Large computational time arises from the need to carry out the analysis in small, stable, 

time steps. The duration of the stable time increment is defined as the time taken for a pressure 

wave to propagate across any element in the analysis [4]. 

 

1.4 Literature review 

 A large quantity of information is available on using the CEL technique with many papers 

focusing on the applications to multi-physics problems involving geophysics and material 

joining [5, 6]. Additionally a small portion of the literature focuses on the modelling of structure 

interaction with a solid body of hyperelastic material. One such paper by L Foucard [7], proved 

particularly useful for contextualising the project by providing a detailed background on the 

technique. Foucard also illustrated the accuracy of the CEL technique when applied to problems 

involving large deformations of hyperelastic media by comparing simulated results to 

experiment. This is valuable information for this study as similar materials are being considered 

that will experience large deformation. Based on the available literature this technique is most 

effective when applied to problems which are likely to experience severe mesh deformation 

such as the problem considered in this study. Further evidence to support the use of this 

technique for fluid-structure interaction problems is provided by S Morlacchi [8] in his paper 

which models the fluid-structure interaction between the rigid structure of a boat and an 

Eulerian fluid. Morlacchi provides a detailed specification of the analysis setup which proved 

valuable when constructing the model considered in this report 

 This project considered a combination of methods from these papers and applied them to a 

problem which involved large deformation of solid boundaries in hyperelastic media 

considering fluid-structure interaction. 

 The hyperelastic material model considered in this paper is presented in Treloar’s “Stress-

strain data for vulcanised rubber under various types of deformation” [9]. This quantifies the 

non-liner stress strain relationship of the material, validates the material models against 

experimental data and is widely regarded as the baseline for hyperelastic material models. 
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2 METHODOLOGY 

2.1  Geometry 

The geometry used for the simulation was created in Solidworks and is based on a simplified 

arrangement of a fracking well with a pipe which is statically sealed inside a cylindrical 

borehole. Figure 1 shows a revolved view of the geometry to illustrate the scale of the problem 

in a typical arrangement. 

 
Figure 1: Revolved geometry 

 
The internal radius of the elastomeric seal is 200mm and it is assembled inside a housing 

which anchors it to the pipe. Figure 2 presents a view of the model geometry which was used 

for the analysis. This is an axisymmetric 1 degree segment and the seal is 60mm tall. 

 

 
Figure 2: Axisymmetric 1 degree segment geometry 
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All of the components pictured are revolved around a common axis by 1 degree. The 

transparent “Eulerian domain” component houses the Eulerian mesh and the fluid component 

contained within the Eulerian specifies the initial position of the fluid. The fluid is coupled to 

the rest of the model though general contact definitions allowing the fluid structure effects to 

be analysed.  

 

2.2 Analysis setup 

Water 

In accordance with the ABAQUS documentation [10] the “fluid” is assigned the properties 

of water using the Us-Up (Linear Mie–Gruneisen) equation of state [10]. This setup defines the 

wave propagation speed, dynamic viscosity and density of the fluid and enables realistic 

simulation of the dynamic behaviour of fluid. 

 

Elastomers 

Elastomers exhibit non-linear hyperelastic stress-strain relationships during experimental 

testing. There are many models available to replicate this behaviour in FEA, however, in this 

study coefficients for a third order Ogden model were used. This was chosen based on the 

experience of the academics involved and the results of a previous research project [11]. Figure 

3 shows the stress-strain relationship for the chosen material model  

 

 

Figure 3: Stress-strain relationship for hyperelastic material 

The constants that define the material behaviour are listed in table 1 and describe a near 

incompressible material with a Poisson’s ratio of 0.499995.  

 

Table 1: Coefficients for 3rd order Ogden model 

i MU i Alpha i D i 

1 371784.209 1.45175070 5.147674720E-10 

2 1308.62521 5.48862619 0.00000000 

3 15445.0545 -1.87467855 0.00000000 
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Contact 

A general (surface to surface) contact was defined between the seal and the borehole with a 

coefficient of friction of 0.3. This is an approximation of friction taken from experimental 

results [12] as the analysis considered in this report is loosely based on similar material and 

contact conditions. 

 

2.3 Simulation 

The simulation work for this study was carried out in ABAQUS 2018 using the Coupled 

Eulerian-Lagrangian approach. The model considered in this study was created in two steps. 

Firstly, the seal was compressed in the radial direction and stretched in the circumferential 

direction in a general implicit analysis. The second step was to model the pressurisation of the 

fluid in a dynamic explicit analysis. 

 

2.3 Implicit analysis 

The purpose of the initial analysis was to radially compress and circumferentially stretch the 

seal. To simplify the analysis, all simulations were carried out at 10% strain in the 

circumferential direction. The value of compression was varied between 10mm and 20mm in 

2.5mm increments to observe the consistency of the analysis technique in different 

configurations.  

Creating an implicit model for this step reduced the computational time of the full analysis 

by approximately 4 hours. To use the results from this analysis, restart output requests were 

enabled in ABAQUS which allowed the displacements and reaction forces in the seal elements 

to be recorded and imported into an explicit analysis. 

 

Model setup 

Boundary conditions were specified to fix the position of the housing and move the borehole 

surface down vertically. A datum co-ordinate system was placed on one cut face of the seal 

segment to fix its position flush with the cut face of the housing. On the axis of the revolved 

components (centre axis of pipe in figure 1) a cylindrical co-ordinate system was defined to 

allow the second cut face of the seal geometry to be stretched around its circumference of 

revolution until a stain of 10% was reached. Only the ‘Housing’, ‘Seal’ and ‘Borehole’ 

components were used for initial pre-stretch. 

 

2.4 Dynamic explicit analysis 

The main portion of the project work was defining an appropriate model for the explicit 

analysis. The model was analysed over a duration of three seconds to minimise the effect of 

fluid momentum on sealing pressure. 

 

Model setup 

An initial state was defined in the explicit analysis to import the final nodal positions and 

strains of the elastomeric seal from the last step of the implicit analysis. Implicit import required 

an identical mesh to be used in both analyses. 
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In addition to the components used in the implicit analysis, the ‘Piston’, ‘Eulerian’ and 

‘Fluid’ components were used to create the CEL simulation. 

The same boundary conditions were applied and modified to fix the position of the 

‘Housing’, ‘Seal’ and ‘Borehole’ components in their final position from the implicit analysis. 

The Eulerian domain was conditioned to be stationary with no fluid flow out of the cut faces 

and free movement of fluid within the domain. The ‘Piston’ (see figure 2) was defined to move 

55mm towards the seal, compressing the fluid in the process. In order to minimise displacement 

jumps and violent wave propagation through the analysis, a smooth step distribution was used 

over the 3 second analysis. 

The same contact conditions were applied, with the addition of contact between the fluid and 

solid. Fluid-solid contact is defined by an explicit ‘all with self’ contact condition which allows 

no slip once fluid is in contact, consistent with common boundary layer theory.  

3 RESULTS 

Results were obtained at 10% strain circumferentially, and a range of compression levels 

radially from 10 to 20mm. To illustrate the analysis and post processing of the CEL technique, 

one scenario has been presented in detail at 12.5mm compression. An overview of the full range 

of results is also presented to describe the behaviour of the seal as compression level changes. 

Figure 4 shows the distribution of strain in the seal and illustrates its deformation during 

leakage. 

 

 
Figure 4: Maximum principle strain of seal under 12.5mm compression during leakage 

Figure 5 shows the value of sealing pressure obtained for a range of compression levels, this 

is the pressure at first leak, see Table 2 for individual values. The first leak moment can be 

identified visually in the post processing stage. The field output delivers images every 0.001s 

during the analysis allowing accurate prediction and visualisation of the leakage point, see 

Figure 4. However, an alternative method was also identified to locate the position of first leak 

in time and to quantify the pressure at that point, shown in section 3.1. 

 

Leakage 



Niall Morrison, Yevgen Gorash and Robert Hamilton 

 8 

  
Figure 5: Graph showing comparison between leakage pressure vs compression level for CEL and FPP 

techniques 
 

Table 2: Leakage pressures for both CEL and FPP techniques, and their difference 

Compression Pressure (Pa) 
Δ (%) 

(mm) CEL FPP 

10 3950 4453 12.7 

12.5 4950 4850 2.0 

15 5980 6550 9.5 

17.5 10250 9910 3.3 

20 18000 17610 2.2 

  average: 6.0 

 

3.1 Post processing 

ABAQUS is capable of producing a field output for averaged pressure in the elements of the 

Eulerian domain but it is difficult to quantify the pressure of the fluid as there is large variations 

in pressure between different elements. A solution to this issue is to average the pressure across 

the entire domain, however,   there are approximately 11000 elements in the Eulerian domain, 

and each element has a value of averaged pressure for each of the 3000 output steps. ABAQUS 

is not capable of executing the post processing required. As a solution, the xy-plot data was 

exported for all Eulerian elements in the analysis and processed in Microsoft Excel. 
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Figure 6: Element pressures versus time from ABAQUS 

Figure 6 shows fluid pressure vs time with each line on the graph representing the pressure-

time history for one individual element. In this form, the solution has too much noise to be 

valuable in determining the leakage pressure, however, Figure 7 shows the same graph with 

only one line representing the fully averaged pressure in the fluid throughout the analysis after 

processing in Excel. 

 

 
Figure 7: Graph of averaged fluid pressure vs time for 15mm compression 
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The results presented in figure 7 allow for evaluation of the pressure-time behaviour of the 

seal and quantify the pressure. At approximately 2.4 seconds the seal experiences an elastic 

leak at a pressure of 4950 Pa followed by a continuous cycle of: Leak – Pressure drop – re-seal 

– leak, which continues at a reduced pressure until the velocity of the piston increases, ramping 

up the pressure to a point where the seal is lost from its housing at time approximately 3.3 

seconds, See figure 8. This behaviour is consistent with experimental results obtained by Q Liu 

[13] which act as an initial form of validation for the current results. 

 

 
Figure 8: Loss of anchor points in seal at 15mm compression 

3.2 Validation 

Validation is essential for FE techniques as it relates the simulated model to the real world 

and must be carried out to develop confidence in simulation results. One way of carrying out 

basic validation is to compare results with, alternative, well validated FE techniques. As 

experimental validation is expensive, a comparative study was chosen for this report. 

The CEL results shown in Figure 5 were validated against a well-established leakage 

prediction technique – Fluid Pressure Penetration interaction (FPP). FPP works by propagating 

fluid pressure into the contact region to simulate leakage. The technique was used and 

successfully validated by W Dearman for a similar application [14]. Figure 5 shows a 

comparison of both analysis techniques and validates the accuracy of the CEL technique for the 

range of compression levels resulting in average difference between the techniques of about 

6%. Individual leakage prediction pressures for FPP can be found in Table 2. 

 The FPP simulation was carried out using an identical setup to the implicit pre-stretch 

analysis to give the same initial configurations and contact conditions. An additional analysis 

step was then added to accommodate the use of the fluid pressure penetration interaction which 

is coupled to each of the surface contacts. FPP then applied the applied the fluid pressure to the 

outer surface of the seal causing deformation until leakage. One advantage of this technique is 

the reduced computational time when compared with CEL, implicit FPP simulations have a 

duration of less than 10 minutes in the case presented here. 
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4 DISCUSSION 

The results obtained show that blow off pressure will increase with increasing compression 

and that the increase is not linear. These results are expected and prove that the CEL technique 

is capable of analysing leakage of an elastomeric seal and will provide realistic results given 

the correct boundary conditions. The results from different compression levels show a variety 

of leakage mechanisms when analysed individually, such as continuous leakage, loss of one 

anchor point in the housing and more violent loss of both anchor points at the higher end of the 

compression scale. 

The validation carried out confirms the accuracy of the technique when compared with an 

alternative, well established, leakage pressure prediction technique (FPP).   

8 CONCLUSION 

The findings of this project suggest that the future of leakage prediction may lie in the use 

of the Coupled Eulerian-Lagrangian technique as it has many benefits over the alternatives. Not 

only does this technique allow prediction of critical leakage pressure or blow off pressure, it 

also allows for observation of the behaviour of seals after leakage occurs which will allow for 

more efficient optimisation of seal design. CEL offers valuable visualisation of leakage 

mechanisms which enables designers to identify target areas for improvement. Applying this 

design methodology to the seal considered here, the designer may observe the extrusion of the 

seal through the gap and solve this issue with more robust anchor points or seal retention rings.  

There are limitations to this technique such as large computational time and solution noise. 

Therefore, future work will aim to improve post processing and investigate techniques to reduce 

noise in the solution such as slightly compressible material models for the operating fluid. 

Alternatively, both analysis methods considered in this project may be used in conjunction to 

accurately describe the initial leak pressure and the post leak behaviour of the seal. The FPP 

technique is more efficient at predicting initial leakage pressure but does not provide any 

indication of post-leak behaviour, whereas CEL is not as effective at prediction of initial 

leakage pressure but is very effective in analysing post-leak behaviour. The use of both 

techniques provides a more comprehensive view of seal behaviour under all operating 

conditions. 

Additionally, experimental validation of this technique would be extremely valuable when 

considering the accuracy of the simulated results before application to more costly and complex 

applications.  
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