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Abstract. In the last years adjoint optimal control has been increasingly used for design
and simulations in several research fields such as shape optimization problems, fluid-
solid conjugate heat transfer and turbulent flows. Recently the study of Fluid-Structure
Interaction problems and its control have gained popularity because of many interesting
applications in engineering and biomedical fields. Fluid-structure interaction systems
consist of one or more solid structures that deform by interacting with a surrounding
fluid flow. FSI simulations evaluate the tensional state of the solid component and take
into account the effects of the deformations on the motion of the interior fluids. In
many engineering applications it is interesting to study the inverse FSI problem which
aims to achieve a certain objective by changing some design parameters such as forces,
boundary conditions or geometrical domain shapes. In this paper we would like to study
these inverse FSI problems by using an optimal control approach based on Lagrangian
multipliers and adjoint variables. In particular we propose a pressure boundary optimal
control method with the purpose to control the solid behavior by changing the fluid
pressure on a domain boundary. The optimality system is derived from the first order
optimality condition by taking the Fréchet derivatives of the Lagrangian with respect to all
the variables involved. This system is solved by using and comparing different line search
methods with a finite element code with mesh-moving capabilities for the study of large
solid displacements. In order to support the proposed approach we perform numerical
tests where the fluid domain boundary pressure controls the displacement that occurs in
a well defined region of the solid domain. The approach presented in this work is general
and can be used to assess different objectives and complex geometries.

1 INTRODUCTION

In Fluid-Structure Interaction (FSI) problems the fluid flow changes the tensional state
of a solid structure that is left free to move and the solid deformation has an important
effect on the fluid flow. Examples of this type of systems are quite common in engineer-
ing, like wind turbines, man-made drones and in the study of biological systems such
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as hemodynamics. In literature these topics are investigated deeply and the interested
reader can see [1, 2, 3, 4, 5, 6, 7, 8, 9]. Optimization has always been used to improve
the performance of engineering devices. Nowadays several approaches to optimization are
available, such as single and multi-objective, adjoint or sensitivity based methods, evo-
lutionary algorithms and many others. In literature there are several works dealing with
this subject, for a quick review the interested reader can see [10, 11, 12, 13, 14, 15] and
references therein. Many attempts to apply optimization techniques to FSI problems can
be found in literature, for example one can see [16] where the authors propose a solution
method for the problem of optimizing a non-linear aeroelasticity system in a steady-state
flow by using a sensitivity method. The work in [17] deals with general shape optimization
methods based on design sensitivity analysis.

In this work we refer to adjoint based methods, which have been proven to be a good
approach for the optimal control of complex problems in which Computational Fluid
Dynamics simulations can be performed on the system of interest, see for example [16, 17].
Moreover these methods have a solid mathematical background and the existence of local
optimal solutions can be proven for many interesting cases, [17, 18]. We are interested in a
monolithic approach to the solution of the FSI system leading to a stable and well defined
solution in a finite element setting [19, 20]. Inside this framework we study a pressure
boundary optimal control problem applied to the monolithic FSI system. The objective
of the control is the matching of a displacement field in a particular region of the solid
domain. This is accomplished by changing the pressure on the fluid inlet boundary which
alters the fluid flow profile and thus deforms the shape. The optimality system which
consists of the state, the adjoint system and the control equation is derived directly from
the minimization problem. Since solving iteratively the optimality system with a steepest
descent method shows slow convergence we propose a quasi-Newton method to improve
the algorithm, see [11]. We report some numerical results obtained by the implementation
of the optimal control algorithm in a finite element parallel code designed for multiphysics
simulations.

2 MATHEMATICAL MODEL

In this section we first describe the mathematical formulation of the steady-state FSI
problem, then we derive the optimality system that arises from the Lagrangian minimiza-
tion and finally we present the algorithm used to solve it.

We now introduce the notation used for functional spaces in this paper, for a detailed
description see [21, 22]. On Ω we denote with L2(Ω) the space of square integrable
functions and with Hs(Ω) the standard Sobolev space with norm ‖ · ‖s (H0(Ω) = L2(Ω)
and ‖ · ‖0 = ‖ · ‖). Let Hs

0(Ω) be the space of all functions in Hs(Ω) that vanish on the
boundary of Ω and H−s(Ω) the dual space of Hs

0(Ω). The trace space for the functions in
H1(Ω) is denoted by H1/2(Γ).

Let us consider a bounded open set Ω ⊂ Rn which is split into a structure domain Ωs

and a fluid domain Ωf , so that Ω = Ωs ∪ Ωf and Ωs ∩ Ωf = ∅. We denote with Γ = ∂Ω
the outer boundary, which is then split into Γs = Γ∩∂Ωs and Γf = Γ∩∂Ωf , the solid and
fluid boundary, respectively. The surface Γi = ∂Ωs ∩ ∂Ωf shared between the solid and
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the fluid is the fluid-structure interface. The system of equations governing our steady
state FSI problem is the following

∇ · vf = 0 on Ωf , (1)

ρf (vf · ∇)vf −∇ · σf = 0 on Ωf , (2)

∇ · σs(ls) = 0 on Ωs , (3)

where l is called displacement field, vf and ρf are the fluid velocity and density, respec-
tively. We consider the interaction of a viscous incompressible Newtonian fluid obeying
to the Navier-Stokes equations with an hyperelastic compressible St. Venant Kirchhoff
material. Then the fluid stress tensor σf and the solid Cauchy strain tensor σs read

σf (pf ,vf ) := −pfI + µf (∇vf +∇vT
f ) , (4)

σs(ls) := λs(∇ · ls)I + µs∇ls , (5)

where pf is the fluid pressure, µf the dynamic viscosity of the fluid while λs and µs are
the solid Lamé parameters. The unknown fields of the strong FSI system are (vf , pf , ls,
lf ), with the solid displacement ls being solution of the elasticity equation (3). Therefore
the deformed solid domain Ωs(ls) is expressed as

Ωs(ls) = {x ∈ R3 | x = x0 + ls} , (6)

where the vector x0 defines the initial solid domain position. On the other hand, lf is an
artificial fluid deformation field defined as an arbitrary extension operator over the fluid
domain Ωf , see [3].

The strong FSI formulation has to be closed with the following boundary and interface
conditions

vf = v0 on Γfd ,

ls = l0 on Γsd ,

σf · n = 0 on Γfn ,

σs · n = 0 on Γsn , (7)

σf · n = σs · n on Γi ,

vf = 0 on Γi ,

where on Γfd and Γsd we impose Dirichlet boundary conditions, while on Γfn and Γsn

standard homogeneous outflow boundary conditions are imposed for the displacement
and velocity fields. On the interface Γi we have that the fluid velocity has to vanish
and the normal components of the stress tensors σ have to be continuous. By solving
the FSI system with a monolithic approach, where the same solver is used for both the
fluid and solid sub-domains, the coupling conditions at the interface (7) are automatically
satisfied. Conversely the use of a segregated approach allows to solve the fluid and solid
sub-problems with already existing dedicated solvers, but the interface coupling conditions
have to be imposed iteratively.
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2.1 The optimality system

In this work we study a solid deformation matching problem, where the control variable
is the pressure on a fluid boundary Γc ⊂ Γf . In an optimal control framework it is of great
importance the definition of the cost or objective functional that one aims to minimize.

J (ls, pc) =
1

2

∫
Ωd

||ls − ld||2dΩ +
1

2
β

∫
Γc

||pc||2 dΓ . (8)

Here the first term takes into account the distance in norm of the solid displacement ls
from a target deformation value ld over the solid sub-domain Ωd ⊆ Ωs. The functional is
completed with a regularization term needed to penalize pc, thus obtaining a boundary
pressure in the space of square integrable functions L2(Ω). If a too high value of β is chosen
the control becomes too smooth and the objective cannot be achieved well, while a lack
of regularization leads to convergence issues in the numerical solution of the problem.

To obtain the optimality system we write the full constrained Lagrangian of the problem
which is composed of the cost functional and state equations multiplied by the appropriate
Lagrangian multipliers

L(pf ,vf , ls, l̂s, pa,va, l̂a, ŝa, βa) = J (ls, pc) +

∫
Ωf

(∇ · v) pa dΩ +

∫
Ωs

(∇ · v) pa dΩ

+

∫
Γc

(va · n)pdΓ +

∫
Ωf

[ρf (v · ∇)v +∇p−∇ · (µf∇v)] · vadΩ

+

∫
Ωs

∇ · [µs∇l−∇p] · vadΩ +

∫
Ωs

∇2l · l̂adΩ (9)

+

∫
Γi

ŝa ·
[
(̂ls − ls) +

v

h

]
dΓ +

∫
Ωs

βa ·
[
v − h(ls − l̂s)

]
dΩ .

In (9) we have introduced the auxiliary mesh displacement l̂s, defined only over the solid
domain and solution of a Laplace operator. The velocity field v has been extended to the
whole domain Ω as

v =

{
h(ls − l̂s) on Ωs,

vf solution of (1)-(2) on Ωf ,
(10)

with h being a positive constant. It is clear that at steady state conditions Ωs(ls) = Ωs(̂ls),
with vs = 0 in the solid. By taking the Fréchet derivatives of the Lagrangian with respect
to the adjoint variables the weak form of the state system (1-3) is obtained, together
with the correct boundary and interface conditions. When the derivatives are taken with
respect to the state variables, after some term rearrangement, the adjoint system in weak
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form reads∫
Γc

(pcβ + va · n)δp dΓ−
∫

Ωf

(∇ · va)δp dΩ−
∫

Ωs

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) ,

(11)∫
Ωf

[ρf (δv · ∇)v · va + ρf (v · ∇)δv · va + µf∇δv : ∇va]dΩ +

∫
Ωf

(∇ · δv)pa dΩ + (12)∫
Ωs

[µs∇δv : ∇vadΩ +

∫
Ωs

(∇ · δv)pa dΩ +

∫
Ωd

w(ls − ld)δv dΩ = 0 ∀δv ∈ H1
Γfd∪Γsd

(Ω) .

The shape derivatives with respect to the fluid and solid domain have been taken into
account and simplified. Since Ωd and Γc are fixed and the system is solved by using a
monolithic approach, then the shape derivative contributions appear only in the equation
for the adjoint displacement la. We do not need the solution of the la adjoint equation to
compute the pressure boundary control pc and therefore it may be neglected.

Finally, when considering the surface terms in (11) we obtain the following gradient
equation for the control pressure pc on the controlled surface Γc

pc = p = −va · n
β

. (13)

In order to recover the strong form of the adjoint system it is necessary to perform
integration by parts on the terms where the variations of the state variables are dif-
ferentiated. After performing the integration by parts, we recover the adjoint state
(vf

a ,v
s
a, pa) ∈ H1

∂Ωf−Γi
(Ωf ) ∩ H2(Ωf ) × H1

∂Ωs−Γi
(Ωs) ∩ H2(Ωs) × L2

0(Ωf ) ∩ H1(Ωf ), by
solving

∇ · vf
a = 0 , (14)

− ρf (∇v)Tvf
a + ρf [(v ·∇)vf

a] + ∇pa −∇ · (µf∇vf
a) = w(ls − ld) , (15)

∇ · vs
a = 0 , (16)

∇ · S(vs
a) = 0 . (17)

with boundary conditions defined as

vs
a = vf

a on Γi ,

S(vs
a) · n = T(vf

a) · n on Γi ,

µl(∇va) · n = −(v · n)va , pa = 0 on Γf
n , (18)

va = 0 on Γfd ∪ Γsd .

It is worth noticing the duality between (18) and (7). In fact if a Dirichlet boundary
condition for a state variable is set then the corresponding adjoint variable must satisfy the
same type of condition in homogeneous form. The adjoint velocity va must be continuous
and different from zero on the interface since the source term (ls − ld) acts in the solid
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region and the information has to propagate towards the control boundary Γc which is
part of the fluid domain. The equilibrium conditions on the interface are automatically
satisfied due to the monolithic approach.

Due to the strongly non linearity and large dimensions the optimality system cannot
be solved with a one-shot method, therefore in this work we use a segregate approach
for the solution of the state, adjoint and gradient equations. By doing so, we can use
the same solver for both the solution of the state (1-3) and adjoint systems (11-12) with
minimal modifications. The simplest line search method based on a backtracking strategy
is the Steepest Descent described in Algorithm 1. The step length r determines how

Algorithm 1 Description of the Steepest Descent algorithm.

1. Set a state (v0, p0, l0) satisfying (1-3) . Setup of the state - Reference case
2. Compute the functional J 0 in (8)
3. Set r0 = 1
for i = 1→ imax do

4. Solve the system (11)-(12) to obtain the adjoint state (vi
a, p

i
a)

5. Set the control update δpi = −(pi−1
c + vi

a · n/β)
6. Set ri = r0

while J i(pi−1
c + riδpi) > J i−1(pi−1

c ) do . Line search
7. Set ri = ρ ri

8. Solve (1-3) for the state (vi, pi, li) with pic = pi−1
c + riδpi

if ri < toll then
Line search not successful . End of the algorithm

end if
end while

end for

far from the current state solution we are moving along the gradient direction given by
δp. Our algorithm stops either when r becomes lower than a tolerance value toll =
10−6 or when two computed consecutive functionals are nearly identical and no more
improvement is possible on the state system. It is clear that this kind of algorithm is
computationally expensive, since it has to solve the state system many times for every
line search, continuously reducing the step length. Furthermore this method shows a slow
convergence rate since it relies only on the information available at the current iteration
to determine the gradient of the functional.

The use of more sophisticated approaches, such as Newton’s or quasi-Newton methods,
can improve the convergence properties of the algorithm, see [11]. In fact quasi-Newton
methods build an approximation of the Hessian matrix of the functional gradient using
only the gradient itself at every optimization iteration. In particular, since in our work
the control parameter is a scalar, the Hessian matrix denoted in the following as B has
to be intended as the second derivative of the functional. The control update equation
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for δp becomes

Bi =

∂J
∂p

(pi−1)− ∂J
∂p

(pi−2)

(pi−1 − pi−2)
(19)

δpi = −(Bi)−1(pi−1
c + vi

a · n/β) (20)

Clearly, since the above formula requires information from the two previous iterations, it
can not be used at the beginning of the algorithm, so the first optimization iteration after
the reference configuration is usually based on a steepest descent.

We implemented this algorithm in our finite element code FEMuS, which is parallelized
by using openMPI libraries and uses a multigrid solver with mesh-moving capability
[23, 24, 20]. We have used standard quadratic elements for all the variables except the
pressure which is assumed linear to satisfy the BBL inf-sup condition. The displacements
are approximated with standard quadratic elements as well.

3 NUMERICAL RESULTS

In this section we apply the algorithm presented to a two-dimensional channel and then
to a three-dimensional geometry. For both cases we compare the results obtained with
the steepest descent and quasi-Newton methods for different values of the regularization
parameter β. The reference domain of our first test is shown in Figure 1 on the left. The

A B C

DEF

0.2 0.1

0.
5

Γc

Γi

ΩsΩf

Ωd

Figure 1: Left: Geometry of the channel. The dotted square on the right Ωd is the controlled region.
Right: Fluid velocity in the reference case, with no control.

region Ωf is the fluid, Ωs is the solid and the segment BE is the interface Γi. The dotted
square on the right is the controlled region Ωd. We prescribe a no-slip condition on the
fluid left boundary AF . On the upper and lower fluid boundaries EF and AB = Γc

we impose pressure boundary conditions and vanishing tangential velocity. The pressure
pEF is fixed to 4 · 103Pa and pAB = 5.5 · 103Pa in the reference uncontrolled case, while
pAB = pc when controlling. The solid external boundary CD is left free to move, while
all the others are fixed.

The physical properties are the following

ρs = ρf = 103kg/m3 νf = 0.07m2/s νs = 0.2 µs = 7.65 · 104Pa , (21)
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so that the fluid is not turbulent and the solid can easily bend. On the right of Figure 1 is
reported the reference case, with no control. Here we obtain an average solid deformation
along the x-component in the region Ωd of 0.052m. For our first test we set the target
displacement to 0.07m thus we want to enhance the solid deformation by changing the
pressure on Γc, in particular the control has to increase it. In Table 1 are compared the
results of the optimization process obtained using both the steepest descent and quasi-
Newton methods and for different values of the regularization parameter β. The results

Table 1: Effects of the regularization parameter β on objective functionals, optimization (Opt.) and
line search (L.s.) number of iterations for the steepest descent and quasi-Newton methods. The reference
case with no control is labeled with β =∞.

Steepest descent Quasi-Newton
β J (l, p) Opt. L.s. J (l, p) Opt. L.s.
∞ 9.309 · 10−6 - - 9.309 · 10−6 - -

10−8 9.780 · 10−8 10 333 9.864 · 10−8 6 39
10−9 2.743 · 10−8 16 628 2.741 · 10−8 5 52
10−10 2.050 · 10−8 12 552 2.065 · 10−8 6 52

show that the algorithm successfully reduces the functionals for every combination of β
and method adopted. In particular for smaller values of the regularization parameter the
objective term of the functional becomes larger and hence the control more accurate. Also,
we notice that for a given β the two methods converge to very similar values. However
the number of iterations required by the steepest descent method to converge is higher,
approximately double, than that of the quasi-Newton approach and consequently a much
higher number of line search iterations are performed. In Figure 2 is reported the history
of the functional during the optimization iterations. Again it is worth noticing that the

0 2 4 6 8 10 12 14 16 18 2010−8
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10−6

10−5

Optimization iteration number

Fu
nc

tio
na

lv
al

ue

Steepest descent
Quasi-Newton

Figure 2: Convergence of the functional for the steepest descent and quasi-Newton methods, β = 10−9.

quasi-Newton method converges significantly faster than the steepest descent.
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3.1 Three-dimensional geometry

x y

z

Figure 3: Case study geometry. Left: in gray is the liquid control surface Γc. Right: in gray is the solid
controlled region Ωd.

In this section we report the results of the three-dimensional geometry shown in Figure
3. The spherical domain consists of an external deformable solid that surrounds the
internal fluid. On the upper liquid surface we prescribe a boundary condition of uniform
pressure and vanishing tangential velocity while the lateral surfaces of the sphere are left
free to move. Clearly by increasing the boundary pressure the solid deformation becomes
more relevant. The solid and fluid properties are the following

ρs = ρf = 103kg/m3 νf = 0.02m2/s νs = 0.2 µs = 7.65 · 105Pa , (22)

The control problem searches the optimal pressure on the upper boundary such that
the z-component of the displacement over the region Ωd shown on the right of Figure 3
matches a uniform target value. We first perform a forward simulation imposing on the
inlet boundary a uniform pressure pfw = 20000Pa, then compute the average deformation
over the controlled region and obtain 7.0982·10−2m. This value acts as target displacement
ld for our optimization test case. By doing so we expect to obtain an optimal pressure
close to pfw and evaluate the accuracy of our algorithm. The initial control pressure value
is p0 = 0Pa, far away from the optimal one pfw = 20000Pa.

In Table 2 we reported the results of the optimization process obtained using both the
steepest descent and quasi-Newton methods and for different values of the regularization
parameter β. With popt we denoted the pressure value obtained at the end of the optimiza-
tion process. We first notice that reducing β the pressure popt approaches the optimal one
pfw = 20000Pa since the regularization contribution of the functional becomes neglicibile
with respect to the objective one and we obtain smaller functional values as well. The
choice of the method does not afflict the accuracy of the results in terms of functional
reductions and pressure values. However, focusing on a specific value of the regulariza-
tion parameter, for instance 10−9, the steepest descent takes 20 optimization with 126
line search iterations to converge, while the quasi-Newton takes only 5 optimization with
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Table 2: Effects of the regularization parameter β on objective functionals, optimization (Opt.) and
line search (L.s.) number of iterations for the steepest descent and quasi-Newton methods. The reference
case with no control is labeled with β =∞.

Steepest descent Quasi-Newton
β J (l, p) popt Opt. L.s. J (l, p) popt Opt. L.s.
∞ 5.552 · 10−5 0 - - 5.552 · 10−5 0 - -

10−6 1.223 · 10−5 19 455 8 75 1.205 · 10−5 18 809 4 43
10−7 1.259 · 10−6 19 959 11 88 1.260 · 10−6 19 983 6 34
10−8 1.356 · 10−7 20 005 20 126 1.355 · 10−7 19 988 5 40

40 line search iterations. The latter method is then much less computationally expensive
from a CPU point of view, since its implementation only requires to store some values of
the functional gradient and control parameter more than for the steepest descent. Finally,
in Figure 4, is reported the evolution of the functional values during the optimization pre-
cess. We recall that the first iteration refers to the reference state and the second one is
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Optimization iteration number
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ue

Steepest descent
Quasi-Newton

Figure 4: Convergence of the functional for the steepest descent and quasi-Newton methods, β = 10−8.

always obtained with a steepest descent line search method.

4 CONCLUSIONS

In this work we have presented an optimal pressure boundary control applied to the
FSI system and based on adjoint variables. The objective is the matching of a displace-
ment field in a particular region of the solid domain by controlling the pressure on a fluid
boundary. We have adopted a monolithic variational formulation to satisfy automatically
the coupling conditions at the fluid-solid interface. Furthermore, we have extended the
velocity field to the solid domain to couple adjoint variables and forces on the interface.
The optimality system has been derived by imposing the first order necessary conditions
to the full Lagrangian. The optimal solutions have been found and compared with those
ones obtained by simple steepest descent algorithm and a quasi-Newton one. Both meth-
ods have shown accuracy and robustness. However we remark that the quasi-Newton
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algorithm shows a faster convergence to the optimal solution. In future works we plan
to assess this pressure control to more realistic geometries to show the feasibility of this
optimization approach in real complex cases.
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