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Abstract. SNOWPAC (Stochastic Nonlinear Optimization With Path-Augmented
Constraints) is a method for stochastic nonlinear constrained derivative-free optimization.
For such problems, it extends the path-augmented constraints framework introduced by
the deterministic optimization method NOWPAC and uses a noise-adapted trust region
approach and Gaussian processes for noise reduction. In recent developments, SNOWPAC
is available in the DAKOTA framework which offers a highly flexible interface to couple
the optimizer with different sampling strategies or surrogate models. In this paper we
discuss details of SNOWPAC and demonstrate the coupling with DAKOTA. We showcase
the approach by presenting design optimization results of a shape in a 2D supersonic
duct. This simulation is supposed to imitate the behavior of the flow in a SCRAMJET
simulation but at a much lower computational cost. Additionally different mesh or model
fidelities can be tested. Thus, it serves as a convenient test case before moving to costly
SCRAMJET computations. Here, we study deterministic results and results obtained by
introducing uncertainty on inflow parameters. As sampling strategies we compare classical
Monte Carlo sampling with multilevel Monte Carlo approaches for which we developed
new error estimators. All approaches show a reasonable optimization of the design over
the objective while maintaining or seeking feasibility. Furthermore, we achieve significant
reductions in computational cost by using multilevel approaches that combine solutions
from different grid resolutions.
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1 INTRODUCTION

Supersonic Combustion RAMJETS (SCRAMJET) are expected to provide high thrust
and low weight for hypersonic flight speeds in the future. Their design has to be robust
under uncertain conditions and fulfill high requirements. Due to the high speed, extreme
flow conditions are encountered in SCRAMJETs which makes the design challenging.
Mixing and combustion must occur within milliseconds, while the flow is supersonic.
Challenges are for example to maximize combustion efficiency, while minimizing pressure
losses, thermal loading, and the risk of ”unstart” or flame blow-out. Thus, a step in the
development of robust SCRAMJET designs is their simulation and design optimization
under uncertainty (OUU).

This results in a stochastic optimization problem which extends the classical deter-
ministic problem by random parameters θ ∈ Θ. They could for example model limited
accuracy in measurement data or may reflect a lack of knowledge about model parameters;
or, in the SCRAMJET application, inflow parameters like the inlet air velocity, pressure
and temperature.

A general approach to tackle such problems is to reformulate the problem where op-
timizing measures of robustness or risk are used. The idea is to find solutions which are
robust despite underlying uncertainty in the parameters. Such an optimization problem
[1, 2] has the following form:

minRf (x, θ),

s.t. Rci(x, θ) ≤ 0, i = 1, ..., r, θ ∈ Θ.
(1)

using so-called measures of robustness or risk Rf and Rc– over the objective function
f : RD × Θ → R and nonlinear inequality constraints ci : RD × Θ → R, i = 1, ..., r
respectively. For now, we are not considering equality constraints of the form ci(x) = 0.
The formulation itself is called robust since we want it to have a certain measure of
robustness against uncertainty in the problem. Two typical measures in the mean E[ · ]
and variance Var[ · ] which account for the average or the spread of possible realizations,
respectively.

With Rf and Rci representing appropriate robustness measures that reflect our op-
timization goal, we can use sample estimators to approximate the quantities of interest
(QoIs). For example, for the approximation of the expected values we draw N samples
{θi}Ni=1 of the uncertain parameters and approximate

Rf [f(x, θ)] ≈ Rb :=
1

N

N∑
i=1

f(x, θi),

using a classical Monte Carlo approach. For simplicity of exposure we only consider Monte
Carlo in the following and we will generalize the approach to multilevel Monte Carlo in
Section 2.2.

Similar approximations exist for other robustness measures as well. The resulting
highly probable upper bound on the sampling error in the approximation of the robustness
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measures Rb is denoted by εb(x), i.e.∣∣∣∣∣E[b(x, θ)]− 1

N

N∑
i=1

b(x, θi)

∣∣∣∣∣ ≤ εb(x),

with high probability. Here, b represents either the objective f or constraint c, a naming
convention which we will make use of subsequently. It is important to notice that each
sample requires a probably computationally expensive evaluation of black-box code lim-
iting the number N of available samples, resulting in significantly large sampling errors
εb(x).

The remainder of this paper is organized as follows: In the upcoming section we intro-
duce SNOWPAC, a derivative-free nonlinear stochastic optimization method, that uses a
trust region approach and Gaussian Process surrogates to tackle problems of the kind of
(1). Moreover, we describe the integration of SNOWPAC into DAKOTA [3]– an uncer-
tainty quantification and optimization library developed by Sandia National Laboratories,
which serves as the main driver of the application. Additionally, we present new multi-
level Monte Carlo sample and error estimators that are used to evaluate the measures
of robustness and risk. As we will see, those error estimators are necessary for SNOW-
PAC to decide if the trust region can be decreased. In the final section we describe an
SCRAMJET–inspired problem which is supposed to show similar behavior as an expen-
sive SCRAMJET simulation; and show optimization results of the application by using
our new approach.

2 METHOD

2.1 (S)NOWPAC

NOWPAC is a derivative-free optimization methods based on a trust region approach.
In [4] we propose a new way of handling the constraints based on an inner boundary path
to compute feasible trial points. Additionally, since the method is derivative-free, it uses
a trust region framework based on fully linear models for the objective function and the
constraints.

The extension of NOWPAC to stochastic optimization –SNOWPAC (stochastic NOW-
PAC) [5]– will be of particular interest in this context. SNOWPAC introduces regularized
trust region subproblems to improve the efficiency of the optimization process in the
presence of noise in the evaluation of the QoIs Rb. It builds local surrogate models mb

k

around the current design xk within a neighborhood, the trust region, of size ρk. Here,
k = 0 represents the initial design. Additionally, SNOWPAC uses sampling estimators to
evaluate and approximate the risk measures.

This, however, introduces noise ε into the evaluations and the surrogate model. Thus,
in order to ensure a good quality of the surrogate, we have to enforce an upper bound on
the error term εkmaxρ

−2
k , where εkmax is the maximum noise estimate at step k. We do this

by imposing the lower bound

εkmaxρ
−2
k ≤ λ−2t , resp. ρk ≥ λt

√
εkmax = max

i
λt

√
εki , (2)
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on the trust region radii for a λt ∈ ]0,∞[. However, bounding the size of the trust region
from below also limits the accuracy of the local surrogate models mb

k, imposing a bound
on the achievable accuracy.

SNOWPAC overcomes this problem by introducing Gaussian process (GP) models as a
second “outer” surrogate [6]. Combining local samples with (more global) Gaussian pro-
cess evaluations reduces the effective sampling error and therefore increases the accuracy
of the optimization results.

By combining those two surrogate models SNOWPAC balances two sources of approx-
imation errors. On the one hand, there is the structural error in the approximation of the
local surrogate models which is controlled by the size of the trust region radius. On the
other hand, we have the inaccuracy in the GP surrogate itself which is reflected by the
standard deviation of the GP. Note that SNOWPAC relates these two sources of errors by
coupling the size of the trust region radii to the size of the credible interval, only allowing
the trust region radius to decrease if the GP posterior estimator becomes small.

SNOWPAC showed promising results in benchmark problems as described in [5], out-
performing optimization methods like COBYLA [7], NOMAD [8] or cBO [9]. With its
derivative-free approach it offers the flexibility and applicability to a wide range of prob-
lems. Thus, it is our method of choice for the SCRAMJET inspired black-box problem.
For more details we refer the interested reader to [5].

Moreover, we have successfully integrated SNOWPAC into DAKOTA [3], enabling its
use as either a stand-alone optimizer or an approximate subproblem solver (in our case
within a MC or MLMC framework). The SNOWPAC package is included as a third party
library within the DAKOTA build process, managed by an interface class. This class
maps black-box function evaluations for either the deterministic NOWPAC or stochastic
SNOWPAC optimizers into evaluations by DAKOTA’s general model class, resulting in
either a single deterministic simulation or a nested uncertainty analysis, respectively.
Mappings for solver specifications, transformations of input variables, standardization of
constraint specifications, and reporting of final results are all performed in this wrapper
class. A number of unconstrained and constrained verification tests have been performed
and benchmark NOWPAC solutions have been added to the DAKOTA nightly test suite.

2.2 MULTILEVEL ERROR ESTIMATORS

In this section we briefly present the MLMC sampling approach that we employed for
the UQ to evaluate the mentioned risk measures mean E[ · ] and variance Var[ · ]. For an
example of application of this method to the a more realistic SCRAMJET problem in
the context of forward UQ see [10]. The MLMC method is an efficient sampling strategy
that is able to produce more reliable, i.e. less variable statistical estimators by resorting
to evaluation at many different levels (time resolution and/or spatial discretization for
example). For more details please refer to [11]. For a generic QoI Q at a given highest
resolution level L (` = 0 being the coarsest level), a MLMC estimator is computed as

Q̂L =
L∑

`=0

1

N`

N∑̀
i=1

(
Q

(i)
` −Q

(i)
`−1

)
=

L∑
`=0

Ŷ`, (3)
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and its variance is given by

Var[Q̂L] =
L∑

`=0

1

N`

Var[ŶL]. (4)

Therefore for a sequence of levels for which Y` → 0 with ` → L, it is possible to
redistribute the computational load toward the coarser level in order to reach a desired
accuracy. Moreover, the optimal allocation of samples N` across levels can be obtained
in closed form once the variance on each level Var[ŶL] is estimated.

In order to couple a given UQ strategy with SNOWPAC, for a generic objective function
Q± ασ it is necessary to provide an estimation of the standard error SE for both Q and
σ. We therefore developed and implemented in the DAKOTA framework (from version
6.7 [3]) the following additional features for the MLMC:

• Derivation of the variance and its standard error for the sample multilevel variance
Var[QL], which we denote by s2ML;

• Derivation of the standard error for the sample standard deviation
√
s2L by using

the so-called Delta Method.

In addition to the previous points, the former also required the derivation of unbiased
(multilevel) estimators up to the fourth order.

The standard error for the sample mean Q̂L and multilevel sample variance s2ML are

simply obtained as

√
Var[Q̂L], and

√
Var[s2ML], respectively; therefore, no further devel-

opment are needed for it. However in the following part of the section we highlight the
key element that enable us to obtain the SE for the sample standard deviation.

2.2.1 Standard error of the sample variance

The variance of QL can be expressed in a multilevel fashion as

Var(Q) =
L∑

`=0

E
[
(Q` − E[Q`])

2 − (Q`−1 − E[Q`−1])
2] =

L∑
`=0

E[P 2
` ]− E[P 2

`−1] (5)

and a sample estimator can be derived for it as

s2ML =
L∑

`=0

(P̂ 2
` − P̂ 2

`−1), where P̂ 2
` =

1

N` − 1

N∑̀
i=1

(
Q

(i)
` − Q̂`

)2
. (6)

Note that this estimator is unbiased since it is a sum of unbiased estimators once the
Bessel correction is adopted to compute each sample variance term P̂ 2

` . For the variance
of s2ML, given an independent estimator at each level, it follows

Var[s2ML] =
L∑

`=0

Var(P̂ 2
` ) + Var(P̂ 2

`−1)− 2Cov(P̂ 2
` , P̂

2
`−1), (7)
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where

Var(P̂ 2
` ) =

1

N`

(
µ4,` − Var2(Q`)

)
+

2

N`(N` − 1)
Var2(Q`). (8)

In the previous expression, the fourth central moment µ4,` = E [(Q` − E [Q`])
4] is required

therefore its unbiased multilevel estimator has also been derived and implemented in
DAKOTA.

In more details the fourth central moment can be written in a multilevel fashion as

µ4
L = E

[
(QL − E[QL])4

]
=

L∑
`=0

E
[
P 4
` − P 4

`−1
]

(9)

and estimated by

s4ML =
L∑

`=0

P̂ 4
` − P̂ 4

`−1. (10)

Therefore, in order to obtain an unbiased estimator s4ML we need unbiased sample esti-

mator for P̂ 4
` and P̂ 4

`−1. By means of some lengthy and rather tedious computations it is

possible to show that an unbiased estimator ̂P 4,unbiased
`−1 can be obtained as a correction of

the fourth order sample estimator

P̂ 4
` =

1

N`

N∑̀
i=1

(
Q

(i)
` −

N∑̀
j=1

Q
(j)
`

)4

, as (11)

̂P 4,unbiased
` =

1

N2
` − 3N` + 3

[
N`

N` − 1
P̂ 4
` − (6N − 9)

(
s2
)2]

. (12)

So it will suffice to compute the multilevel fourth order estimator it follows:

s4,unbiasedML =
L∑

`=0

̂P 4,unbiased
` − ̂P 4,unbiased

`−1 . (13)

The covariance term that appears in Var[s2ML] (see Eq. (7)) is fairly more involved and
it can be expressed as

Cov(P̂ 2
` , P̂

2
`−1) =

1

N`

(
E
[
P 2
` P

2
`−1
]
− Var(Q`)Var(Q`−1)

)
+

1

N`(N` − 1)
(E [Q`Q`−1]− E [Q`]E [Q`−1])

2 ,
(14)

where

E
[
P 2
` P

2
`−1
]

= E
[
Q2

`Q
2
`−1
]
− 2E [Q`−1]E

[
Q2

`Q`−1
]

+ E2 [Q`−1]E
[
Q2

`

]
− 2E [Q`]E

[
Q`Q

2
`−1
]

+ 4E [Q`]E [Q`−1]E [Q`Q`−1] + E2 [Q`]E
[
Q2

`−1
]
− 3E2 [Q`]E2 [Q`−1] .

(15)

Note the computation of an unbiased estimator for the latter covariance term is not
difficult to derive once unbiased estimators for the mean and variance are available.
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2.2.2 Standard Error for the sample standard deviation

Unfortunately the SE for the multilevel standard deviation cannot be derived in closed
form exactly. This is also the case for a single level sample standard deviation s. It
is usually possible to resort to two approximations. The first is to assume that the
distribution of the population is normal. In this case an exact expression for the standard
error SE(s) can be derived as

SE(s) =

√
s2

2(N − 1)
. (16)

However, in practice the distributions of the QoIs are not normal and, therefore the
previous expression is only an approximation. The second approximation is to apply
the so-called Delta Method which enable us to approximate the probability distribution
of a function (the root mean square for us) of an asymptotically normal estimator, i.e.
the sample variance in our case. Of course, in our case the sample variance is not an
asymptotically normal estimator, therefore this is only an approximation. Therefore, for
a generic estimator θ, the SE of its generic function f(θ) is given by

SE(f(θ)) ≈ |g′(θ)|SE(θ). (17)

For us, θ = s2ML and f(θ) = θ1/2, so it follows that

SE(
√
s2ML) ≈ 1

2
√
s2ML

√
Var[s2ML]. (18)

3 NUMERICAL RESULTS

In order to accelerate the testing and refinement of the algorithms, we designed a
model problem that is related to the SCRAMJET problem but which executes much
more rapidly. This allows us to perform an entire OUU workflow in a few hours. In direct
support of the OUU algorithmic development, this offers capabilities to more thoroughly
compare the performance of different OUU strategies.

The test problem consists of a 2D inviscid flow through a duct with geometry inspired
by the 2D SCRAMJET problem. We designed three resolution levels, namely COARSE,
MEDIUM and FINE, that can provide a multilevel capability and run in about 10s, 30s
and 300s respectively. The software selected for this test case is the Stanford University
Unstructured Code (SU2) [12] while for the meshing capability we used gmsh [13]. In
particular, for each design (which involves a unique domain geometry) the geometry is
obtained from gmsh and the CFD is performed with SU2 once the inlet conditions are
fully specified. The mesh discretizations are reported in Figure 1 where both COARSE,
MEDIUM and FINE resolutions are shown for reference.

The test problem is designed to mimic the shock wave pattern of the SCRAMJET
problem. This task is accomplished by introducing a wedge in a location where the
primary injector is eventually located. The role of the wedge is to deflect the flow in order
to generate a shock wave that can reflect against the walls and interact with the rarefaction
waves obtained in the region of the cavity where the section of the duct abruptly increases.
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Figure 1: Different mesh sizes used for the multilevel approach. From top to bottom:
COARSE, MEDIUM and FINE.

The geometry of the bump is parameterized in order to provide five design parameters
for the OUU (same dimensionality as the SCRAMJET). A cartoon of the wedge with the
definition of the five design parameters is reported in Figure 2. The bounds for the design
parameters, x, and uniform parameters, ξ, are given in the following Table 1 with their
respective lower and upper bounds:

Figure 2: Design parame-
ters for the SU2 supersonic
duct problem.

Design parameters x Uncertain parameters ξ
0.5 ≤ hb ≤ 2.5 p0,in ∼ U(1.332e6, 1.628e6)
7.5 ≤ lt ≤ 11.5 T0,in ∼ U(1.395e3, 1.705e3)
2.5 ≤ ltp ≤ 4.5 Min ∼ U(2.259e0, 2.761e0)

17.5 ≤ lb ≤ 20.5
79.5 ≤ xb ≤ 85.5

Table 1: Design and uncertain parameters and their respec-
tive lower and upper bounds.

The inlet conditions for the problem are fully determined by the stagnation pressure
p0,in, temperature T0,in and the Mach number Min. We consider these three parameters
to be uncertain, while their nominal values are consistent with the SCRAMJET inlet
condition.

The OUU problem to be solved is the following:

P ∗loss(x
∗) = min

x
E[Ploss(x, θ)]

s.t. 440 ≤ E[Tc(x, θ)]− 3σ[Tc(x, θ)],

where the objective function Ploss and the constraint Tc are defined as follows:

Ploss =

(
P in
0 −

1

Ly

∫
out

P0(y)dy

)
/P in

0

Tc =
1

Lx

∫
Lc

T (x)dx,

where Lc describes the length of the cavity domain, used for computing the average cavity
temperature.

We consider in the following three separate strategies to be embedded in the OUU
workflow with DAKOTA+(S)NOWPAC with the given nomenclature used in the upcom-
ing sections:

• (DET) DAKOTA+NOWPAC deterministic optimization at nominal value of stochas-
tic parameters
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• (MC) DAKOTA+SNOWPAC using Monte Carlo sampling estimators with 54 sam-
ples on the FINE grid

• (MLMC) DAKOTA+SNOWPAC using multilevel Monte Carlo sampling estimators
with 179 samples on the COARSE grid, 20 samples on the MEDIUM-COARSE and
5 samples on the MEDIUM-FINE discrepancy. This profile was selected by matching
the accuracy of the MC estimator with 54 samples on the FINE grid.

In Table 2 we compare the different results obtained from the three methods of choice.
Overall, we receive slightly different designs for the three strategies, and MC shows the
best objective value. Moreover, the lower constraint is active for the stochastic methods.
Regarding the cost, we can see the advantage of using MLMC compared to MC: we reduce
the number of FINE grid evaluations from 4320 for MC to 400 for MLMC.

Problem x∗ p∗loss c∗ Cost (C, M, F)
DET [1.86, 11.32, 2.5, 17.71, 79.55] 0.4931 602.3990 (0, 0, 80)
MC [2.10, 9.65, 4.5, 20.5, 79.5] 0.4780 447.7121 (0, 0, 4320)

MLMC [2.24, 7.50, 2.50, 17.50, 79.50] 0.4906 442.3871 (15920, 2000, 400)

Table 2: The table shows the design x∗, objective p∗loss, constraint c∗ and cost for the
different methods on different resolutions COARSE (C), MEDIUM (M) and FINE (F)
after 80 evaluations steps when DET has converged.

As can be seen in the table and also already suggested in benchmark results in [4],
NOWPAC converges and find a local optima quickly after 80 steps since there is no noise
restriction on the trust region. The constraint is not getting active in this case.

By introducing uncertainty into the problem we can see its influence in the noisy eval-
uations. The evolution of the objective (left) and constraint (right) for the two stochastic
approaches are reported in Figures 3 and 4. While the dashed, lighter colored lines show
the evaluations of the optimizer in the current step, the dark blue and dark green color
show the optimal value and respective constraint. In the constraint plots, we further
depict the mean value of the constraint. In both cases the optimizer finds a lower optima
compared to the deterministic optimization while the constraint is active for most of the
optimization progress. Moreover, we see the effect of the introduced push back on the
constraint such that the mean constraint value of the design is kept back in the feasible
domain.

Finally, regarding the MLMC approach we see a similar initial behavior of the opti-
mization progress compared to MC, although the final objective found is higher and the
optimizer gets stuck in a corner of the optimization domain; all design box constraints
are active. Additionally, the nonlinear constraint is active as well. Despite the savings in
computational cost, however, we can see progress in the optimization.

The flow field of the pressure of the final designs compared to the starting design is
shown in Figure 5 from top to bottom: starting design, DET, MC and MLMC. Although
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Figure 3: Objective and constraint evolutions for the OUU problem using MC.
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Figure 4: Objective and constraint evolutions for the OUU problem using MLMC.

we reach different designs we see the attenuating effect on the initial shockwave induced by
the decreased slope or height of the wedge. Relating these illustrative with the qualitative
results from the table we deduce further that the objective functions inhibits multiple local
minima found by the different optimization approaches.

Due to high noise in the estimators we only see a slow convergence in the stochastic
methods MC and MLMC. Because of that the trust regions size shrinks slowly and we
selected a maximum number of optimization steps as stopping criteria. Regarding the
optimization plot as well, there is not much progress visible after about 50 iterations
steps for MC as well as MLMC.

4 CONCLUSION

We presented current results for optimization under uncertainty for a SCRAMJET in-
spired problem by using the derivative-free optimization method SNOWPAC and newly
developed error estimators for multilevel sampling. Those error estimators are necessary
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Figure 5: Different final designs obtained after optimization using the presented methods
compared to the starting design. From top to bottom: starting design, DET, MC and
MLMC.

since SNOWPAC requires noise estimates for its trust region management and progression
in the optimization. The obtained results show optimization progress for the determinis-
tic case, classic Monte Carlo estimators as well as the new multilevel approach. However,
in the two robust optimization scenarios we can see the performance advantage of using
a multilevel approach by significantly reducing the number of evaluations on the high-
est resolution grid thereby reducing the overall computational cost considerably. Those
results were all computed by using the framework offered by DAKOTA which now sup-
plies (S)NOWPAC as a optimization methods. In further studies we will investigate the
behavior for different risk measures like chance constraints or conditional value at risk.
Additionally, using the possibilities of DAKOTA we will consider different approaches to
estimate the measures of robustness and risk and also exploit the performance advantage
due to, e.g. its intrinsic possibilities for parallelism.
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