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Abstract. This study concerns the computational assessment of the failure modes of hybrid 

beams made up of prefabricated steel truss encased within a concrete block and named hybrid 

steel trussed concrete beams (HSTCBs). The considered failure mode is under three-point 

bending and the adopted approach is developed by means of finite-element (FE) simulations 

of beams of different scaled sizes, whose design corresponds to current industrial practice. 

The FE model is based on well-established constitutive relations of both concrete and steel. In 

particular it employs a continuum damage model for concrete (concrete damaged plasticity 

model) and a classical elastic-plastic multi-linear behavior for steel. As regards contact at the 

interface, two different approaches are used and compared: a simplified contact condition able 

to simulate perfect bond and a non-linear cohesive interaction capable of reproducing the 

progressive degradation of the initial contact condition. Furthermore, models are generated 

also employing finite elements of different type and order and, therefore, the computational 

efforts required by each model are compared in order to evaluate the efficacy of the simplest 

modelling type able to retain the salient features of the structural mechanism. Existing 

experimental data are used for validating the numerical results. The simulations on specimens 

of three different sizes show that, in the absence of three-dimensional geometrical similarity, 

the small-size beam exhibits shear failure while the large-size beams attain a more ductile 

failure under flexure. The numerical results allow observing a transition between different 

failure modes, which indicates the importance of employing a robust three-dimensional FE 

model for design extrapolation of HSTCBs across different sizes and geometries.  
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1 INTRODUCTION 

The Hybrid Steel Trussed Concrete Beams (HSTCBs) represent a commonly used 

structural solution for beams in seismic areas for both framed civil structures and light 

industry buildings. This type of beam is usually constituted by a prefabricated steel joist made 

up of ribbed or smooth steel bars embedded into a cast-in-place concrete core, as shown in 

Figure 1. HSTCBs are especially employed in the Italian construction industry since almost 

fifty years thanks to the numerous advantages of their use. In fact, they allow significant 

reduction of the construction time thanks to the partial prefabrication; moreover no formwork 

are required due to the presence of the bottom steel plate, which is part of the prefabricated 

steel joist; in situ welding or tying are not required and risk of injury is minimized because no 

intermediate supports are required when specific end-devices are employed at beam-to-

column joints (Figure 1). Finally, HSTCBs are able to cover large spans with relatively small 

beam depths. 

In the last decades, several researches have been carried out on the behavior of HSTCBs. 

Among others, the main investigated issues were the flexural and shear strengths of the beam 

[1-6], the behavior of beam-to-column joints and connections [4,7], the stress transfer from 

the bottom chord of the truss to the concrete core [5,8-10]. All researches highlighted that the 

complex three-dimensional (3D) geometry of the beam and the nonlinear constitutive 

behaviors of the materials make it difficult to develop a single analytical model for predicting 

the failure load of HSTCBs. Moreover, most studies deal with slab-thick beams and do not 

take into account the effects of different sizes on the mechanical response of HSTCBs. This 

fact is also due to the difficulty of testing large-scale specimens in laboratory and then 

interpreting the experimental results and deriving design formula. For this reason, the 

development of computational models through finite element method (FEM) becomes an 

essential research tool. This is what motivates the present work. 

This paper presents a numerical study of the failure behavior of HSTCBs of different sizes, 

including large-scale specimens. The influence of specimen size and geometry on the 

structural failure has been observed and studied by several researchers with regard to 

structures made of many types of concrete materials [11-13]; in this frame, the authors 

recently proposed a first computational study on the structural failure of HSTCBs [14].  

The understanding of the size and geometrical effects could lead to the improved design 

procedure since many full-scale designs have to rely on the extrapolation of laboratory 

experiments on small-scale specimens. Meanwhile, the analysis of the size and geometrical 

effects has also inspired advanced analysis techniques for both classical and new problems 

[15,16]. 

In this work, FEM models are generated also employing finite elements of different type 

and order and, therefore, the computational efforts required by each model are compared in 

order to evaluate the efficacy of the simplest modelling type able to retain the salient features 

of the structural mechanism. Existing experimental data and numerical benchmark are used 

for validating the results. Finally, the observed overall size and geometrical effects on the 

peak load capacity of HSTCBs are discussed. 
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Figure 1: Topology of HSTCB (redrawn from Ref. [14]) 

2 FINITE ELEMENT MODEL GENERATION  

The numerical model is developed with the aim of retaining the salient features of the 

mechanical response of the HSTCB, on one side, and computational efficiency for the design 

purpose, on the other side. 

For these reasons, the steel reinforcement constituted by both rebars and bottom plate is 

modeled using beam and shell elements, respectively, while concrete is modeled using first 

order tetrahedral finite elements. A preliminary convergence study allowed determining the 

most suitable mesh size. 

Regarding materials, the constitutive behavior of concrete is modeled by means of a 

continuum damage plasticity model [17], which combines the theory of continuum damage 

mechanics and the theory of plasticity. Moreover, the crack band model is used [18] in order 

to mitigate spurious mesh dependency of FE simulation of concrete fracture due to its strain 

softening behavior. The fracture energy Gf represents the input parameter in the definition of 

the tensile behavior of concrete and as a consequence the tensile stress-strain curve is adjusted 

as a function of element size in order to preserve the constancy of the fracture energy.  

The constitutive relationship of steel is assumed to follow a metal plasticity model with 

elasto-plastic hardening behavior. In this model, the von Mises yield surface with an isotropic 

hardening rule is used to describe the plastic flow, in which the yield surface changes its size 

uniformly in all plastic strain directions. 

As simplified hypothesis, the steel bars are assumed perfectly bonded to the concrete 

material so that the modeling of the highly non-linear interface behavior is not required. This 

simplified assumption will be validated by comparing the results of such a model with those 

of a more complex model in which the interface behavior is implemented by using a non-

linear cohesive interaction between surfaces. 

FEM simulations of three-point bending tests on HSTCBs of three sizes were performed 

using the general purpose FE analysis software ABAQUS 6.12 [19] for investigating the 

influence of size and geometry on the failure behavior of such beams. The three different 

sizes of beams are here denoted as specimens S1, S2 and S3; their geometry is reported in 

Figure 2. The span-to-depth ratio of specimen S1 is a/D = 2.4; this value is kept the same also 

for the other two specimens. The depths of the beams are chosen so that specimens S1, S2 and 

S3 have a size ratio 1: 2.22: 4.93. The width b is kept constant, equal to 300 mm. The size of 

the steel reinforcement (rebars and bottom plate) is kept constant according to the most 
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adopted industrial practice, while the horizontal span of the diagonal steel truss is linearly 

scaled with the beam depth. It is noteworthy to remark that specimens S1 and S2 represent 

typical sizes that can be used in practice. Consequently, the cross sections of the specimens 

present an increasing slope of the diagonal rebars, which results equal to 68°, 81° and 86° for 

specimens S1, S2 and S3, respectively. 

Therefore, it has to be stressed that, based on these assumptions, the examined specimens 

do not exhibit geometrical similarity, fact that has a profound implication on the failure 

behavior of the beams. Finally, all specimens are considered to be made of the same type of 

materials, i.e. concrete with compressive strength of 25 MPa, class B450C steel for the 

longitudinal and diagonal rebars and class S355 steel for the bottom plate. 

 

 

Figure 2: FEM model features (dimensions in mm) (redrawn from Ref. [14]) 
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3 EXPERIMENTAL AND NUMERICAL BENCHMARK FOR VALIDATION 

In order to validate the proposed FEM model, two benchmarks are used: the experimental 

results of recent three-point bending tests conducted on specimen S1 [5] and the outputs of a 

different FE simulation in which a more realistic cohesive law for the steel-concrete interface 

is used in the modeling of all beam sizes [6,14]. These comparisons will allow validating the 

suitability of the simplified assumption of the perfect bonding of the steel-concrete interface 

for the purpose of the prediction of the load capacity of HSTCBs by means of robust and 

computationally efficient FE model. 

Experimental tests of three-point bending have been performed on specimen S1 at the 

University of Palermo [5]. The cross-section of the specimen has a dimension of 250 mm 

depth and 300 mm width; the prefabricated steel truss is made up of 16 mm-diameter rebars 

on the top, 5 mm-thick steel plate at the bottom and 12 mm-diameter diagonal rebars. The 

rebars are made of ribbed steel with yielding strength fy = 450 MPa while the lower plate is 

made of smooth steel with fy = 355 MPa. The design compressive strength of concrete fc is 25 

MPa. The shear span a is equal to 600 mm and the bottom steel plate is anchored at the ends 

of the beam in order to avoid slip between the plate and the concrete.  

Two specimens of type S1 were tested, denoted as specimen A1-1 and A1-2, respectively. 

These tests were performed in displacement control, monitoring the mid-span deflection by 

external LVDTs, while the strains of the steel bars and the bottom plates were measured by 

electrical strain gauges.  

Analyzing the test results reported in Figure 3, it is possible to observe how flexural cracks 

start to develop at the bottom of the specimen as the load reaches about 120 kN, afterwards, 

for increasing load values, diagonal shear cracks start to initiate and propagate while the 

growth of the aforementioned flexural cracks becomes insignificant [5]. When the beam 

reaches its peak strength, significant diagonal shear cracking is observed, which leads to the 

subsequent loss of load capacity. Finally, the embedded ductile steel trusses allow retaining a 

residual load capacity of about 200 kN for large displacements. 

 Figure 3 also presents the comparison between the experimental load-displacement 

curves of S1 specimen and those simulated by the FE model. The simulated curve is denoted 

as “Model 1 (perfect bond)” in the figure. It is evident that the present model overestimates 

the initial stiffness of the beam due to the hypothesis of perfect bond at the steel-concrete 

interface. Concerning the global mechanism, the FE simulation shows that the beam exhibits 

an overall brittle failure with sudden drop of the load-carrying capacity right after the peak 

load. Subsequently, the beam exhibits a residual load-carrying capacity in accordance with the 

experimental tests. FE outputs allow observing that, at the initial loading phase, the concrete 

experiences flexural damage at the bottom of the beam followed by the yielding of the steel 

truss and plate. The flexural failure of concrete does not lead to a significant loss of load 

capacity since the tensile stress generated by the bending is primarily taken by the steel 

elements and, in particular, by the bottom plate. Therefore, the flexural damage that affects 

the tensile concrete in this stage does not contribute to the failure of the beam. Conversely, 

when the peak strength is attained, extensive compressive failure occurs almost along the 

direction of the compressed diagonal steel bars in the form of a narrow band. This indicates 

that a compression strut is formed along the diagonal direction, which starts to experience 

damage signifying the diagonal shear failure.  
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With the aim of further investigating the role of steel-concrete interface, the three-point 

bending test of specimen S1 is simulated also by considering a nonlinear model for the 

interfacial behavior [6,14]. In such a model, the interfacial slip is determined as 2 2
s t    , 

where δs and δt are the slips along the two orthogonal directions in the plane of the interface. 

The work-conjugate effective shear traction needs to satisfy the relationship:  

d d ds s t tt t      (1) 

where ts and tt are the shear tractions in the two orthogonal directions in the plane of the 

interface. Eq. 1 has to be satisfied for any values of dδs and dδt. This condition yields   

/s st   and /t tt   . Therefore, the behavior of the steel-concrete interface can be 

described by the relationship between the net slip and the effective shear traction.  

Figure 3 shows the load-deflection curve simulated by such a detailed FEM model with 

non-linear interfacial behavior, together with that simulated by the proposed simplified model 

and the experimental measurement. It is seen that the result of the benchmark detailed model 

agrees well with the experimental result.  On the other hand, the comparison with the 

simulation performed by using the simplified model shows that the use of a more realistic 

steel-concrete interfacial behavior would allow catching better the overall beam stiffness. 

However, the detailed modeling of the non-linear interface does not significantly affect the 

peak load as well as the total energy dissipation. This is because the steel-concrete interface 

does not experience significant damage in the meaning that, as expected, the energy 

dissipation along the interface is small compared to the dissipation due to concrete damage 

and steel plasticity. Therefore, the simplified model proves to be sufficient for modeling the 

failure behavior of specimen S1 and requires a more contained computational time. The 

comparison between the present model and the chosen benchmark shows that the present 

model can well capture various essential failure mechanisms as well as the peak load capacity 

of the beam even though it does not predict well the initial elastic stiffness of the beam. 

 

 

Figure 3: Comparison between detailed and simplified FEM models against the experimental results 
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4 RESULTS OF FINITE ELEMENT SIMULATIONS 

Based on the FE model description and validation, the simulation of the failure behavior of 

specimens S2 and S3 is now performed assuming the perfect bond model, which is able to 

provide a reasonable prediction of failure mechanisms of specimens because the damage of 

the steel-concrete interface has an insignificant effect on the overall failure behavior. 

Moreover, for validation, the benchmark detailed FE model is used to simulate the behavior 

of specimens S2 and S3.   

Figure 4 shows the numerical load-deflection curves of specimens S2 and S3 by using the 

present model (Model 2/3 perfect bond) and the benchmark model (Model 2/3 cohesive 

interface). It is seen that the curves are very similar for both specimens. It is noteworthy to 

observe that for these large scale specimens there is no significant difference in the initial 

slope of the simulated curves, as instead observed for specimen S1.This is attributable to a 

less influence of the initial elastic response of the steel-concrete interface on the elastic 

response of specimens S2 and S3. In this regard, it has to be reminded that the dimension of 

the steel truss is not scaled proportionally with the concrete beam size. 

Figure 4 indicates that, differently from specimen S1, specimen S2 exhibits a prevalently 

ductile behavior with almost constant load value for a large range of displacements before the 

ultimate loss of load capacity. During the initial loading phase, concrete damage occurs in the 

mid-span of the beam mainly due to the bottom steel plate, which is pulled upward by the two 

diagonal truss bars (Figure 5a), inducing local compression on concrete. When the specimen 

achieves the peak load, the bottom plate and the diagonal rebars of the truss have already 

yielded and diffused flexural cracks can be observed in the concrete (Figure 5b). In the 

diagonal direction, the compressive strength of concrete is reached. It is also possible to 

observe limited compressive failure in the mid-span of the beam where the local deformation 

of the bottom plate induces local compressions.  

For specimen S2, the overall damage is concentrated mainly along the diagonal directions 

while it is more limited in the mid-span of the beam. This fact is very different from the 

failure mechanism observed in specimen S1, in which cracking is concentrated along the 

diagonal directions. For this reason, the beam exhibits an overall ductile behavior, the 

diagonal compressive damage being limited. Furthermore, the fact that the steel truss has a 

steeper angle in the transversal direction, induces a confinement effect of the concrete 

material that suppresses the diagonal shear cracking. In addition, other factors, such as the 

aspect ratio of the cross section, may also influence the failure mode of the beam. A detailed 

parametric study is suitable for investigating the effects of these factors. 

The simulation showed that the dominant failure mode of specimen S2 is not diagonal 

shear failure as in specimen S1, therefore it is expected that the interfacial damage in this 

specimen would be less than that of specimen S1. The post-peak regime of the load-deflection 

curve allows confirming this consideration: in fact, the curve simulated by the perfect bond 

model is almost close to that simulated by the model with non-linear interfacial behavior. 

With regard to specimen S3, it can be noted that diffused cracks appears at the bottom of 

the beam in the initial loading steps. Subsequently, compressive damage also appears along 

the diagonal directions. However, at the peak load, the predominant failure mechanism is 

characterized by flexural damage at the mid-span of the beam. After the peak, the maximum 

plastic principal strains continuously increase in the diagonal directions. It is noteworthy to 
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mention that the width of the cracks in the diagonal direction tends to increase and become  

comparable to the flexural cracks. This is the predominant cracking pattern observed in the 

simulation, which proves to remain almost the same till the end of the analysis (Figure 6).  

The comparison between the failure modes of specimens S2 and S3, shows that specimen 

S3 exhibits less ductility.  In particular, even though the diagonals of the steel truss in S3 have 

a steeper angle in the transverse direction, it is noted that, in the longitudinal direction, the 

amount of concrete between the steel trusses in specimen S3 is larger than that in specimen 

S2. Consequently, the confinement effect previously seen for specimen S2, would be less 

significant in specimen S3.  On the other hand, if compared to the failure behavior of 

specimen S1, specimen S3 exhibits a more ductile response, which indicates that the 

confinement effect in the large specimen is more pronounced than in the smaller one. 

Specimen S3 exhibits a combined flexural and shear damage in the post-peak regime; this fact 

also explains the difference in the post-peak curves simulated by the present model and the 

benchmark model, which becomes more pronounced as compared to specimen S2 where only 

the flexural damage is dominant the post-peak regime. 

 

 
a) b) 

 
Figure 4: Simulated load-dflection curves for: a) specimen S2 and b) specimen S3 [14] 

   
a) b) 

 
Figure 5: Damage mechanism of specimen S2: a) local deformation of the truss; b) maximum strain profile 
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Figure 6: Cracking patterns of specimen S3 at the ultimate failure 

5 DISCUSSION ON FAILURE MODES 

As discussed above, the FE simulations showed two principal failure behavior in concrete, 

i.e. flexural failure at the mid-span and shear failure in the diagonal direction.  

With regard to the first mode, flexural failure of HSTCBs can be depicted as a ductile 

mode in which the load is carried essentially by the bottom steel plate while tensile concrete is 

cracked. Conversely, the second failure mode is typically quasibrittle and causes a sudden loss 

of  load-carrying capacity after the peak strength is reached. 

 FE simulations showed the influence of the three-dimensional complex geometry of the 

HSTCB in the relative dominance of these two failure modes, because the arrangement of the 

steel truss theoretically induces different confinement levels on concrete and allows delaying 

or accelerating the diagonal shear crisis. 

It is well known that, in classical reinforced concrete (RC) beams, analytical scaling 

models for the evaluation of the size effect in the load-carrying capacity are available for 

geometrically similar specimens with the same failure mode (e.g. [20-22]). Conversely, the 

three specimens examined in this study do not follow geometrical similarity and, therefore, 

the size and geometrical effects on the peak load can be explained qualitatively without 

applying rigorously the existing analytical scaling models. 

Generally, for analyzing the size effect, the nominal structural strength σN is used as a load 

parameter. This stress is thus defined as: 

max /N P bD   (2) 

in which Pmax is the maximum load capacity and the dimensions D and b are the beam 

depth and width, respectively.   

It has been seen that the predominant failure mode of specimen S1 is the diagonal shear 

failure. Such a failure mode has been extensively investigated for analyzing the size effect of 

RC beams and the equation proposed for the variation of the nominal strength is [20,22]: 

 
1/2

0 01 /N D D 


   
(3) 

In Eq. 3 σ0 is the nominal structural strength at the small-size limit while D0 represents the 

transitional size. Both σ0 and D0 depend on the structural geometry, material strength and 

fracture properties. In particular, Eq. 3 is used for defining the transition from quasi-plastic 

shear failure to brittle shear failure as the specimen size becomes much larger than the size of 
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the fracture process zone.   

 It can be observed that the shear failure experienced by HSTCBs basically retains the 

same mechanism as the diagonal shear failure of conventional RC beams. Consequently, Eq. 

3 can be considered an adequate approximation of the size effect in shear failure of HSTCBs.  

On the contrary, specimens S2 and S3 experienced a significant flexural damage with more 

limited diagonal shear failure after the peak load. Therefore, neglecting the damage of 

concrete in the diagonal direction and assuming that tractions on the bottom of the beam are 

taken by the yielded steel plate, then the ultimate bending moment Mu can be simply 

calculated as u y sM F A d , where Fy is the yielding strength of steel, As is the area of the steel 

plate and d  is the effective depth of the beam. Consequently, the maximum load Pu of the 

beam subjected to three-point loading is equal to 4 /u y sP F A d L . In the latter expression, the 

ratio /d L can be taken as a constant, the dimension of the beam being geometrically scaled in 

2D. Under this assumptions, the load capacity of the HSTCB would be independent of the 

beam size and, therefore, the corresponding scaling equation for σN can be written as 

1
N D    (4) 

where η = 4 /y sF A d bL .  

In Figure 7 the relationship between the nominal strengths of specimens S1-S3 and their 

sizes are plotted on the log-log scale, together with Eqs. 3 and 4. In particular, the figure 

shows only a schematic plot of Eq. 3 because σ0 and D0 cannot be determined based on only 

one simulation point for the diagonal shear failure mode. The plot shows that for specimens 

S2 and S3 the simulated size effect is consistent with Eq. 4. while, for specimen S1, it is 

expected to follow Eq. 3. 

Based on the aforementioned analysis, the nominal strength of the beam can be understood 

as the minimum value of the nominal strengths predicted by Eqs. 3 and 4: 

 
1/21

0 0min , 1 /N D D D  
  

 
 

(5) 

Furthermore, Figure 7 also shows that there is a transition between these two size effects, 

which depends on both the size and geometry of the HSTCB. However, in this type of beam, 

the complex geometry of the steel joist and the confinement effect induced in the concrete 

material, make it difficult to derive a simple analytical solution for the nominal strength able 

to take into account both failure modes. 

Finally, it is noteworthy to observe that Eq. 5 predicts a size effect with 1
N D   for 

flexural failure. This is due to the fact that in the examined specimens the bottom steel plate is 

not scaled proportionally with the beam size, conversely, a 5-mm thick plate is adopted in all 

specimens, in accordance with the current industrial practice.  

It is clear that this assumption greatly penalizes the nominal strength for large-size beams. 

If the steel plate thickness were proportionally scaled with the beam size, the size effect on 

nominal strength for the flexural failure mode would vanish. As a result, only the diagonal 

shear failure mode would be observed, which could be subjected to a strong size effect in the 

absence of shear stirrups [15,16]. 
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Figure 7: Simulated size effect on the nominal structural strength (redrawn from Ref. [14]) 

6 CONCLUSIONS  

This study presented a robust and efficient FE model for the assessment of the failure 

behavior of HSTCBs of different sizes. Both numerical and experimental benchmarks were 

used for validating the model accuracy. The comparison with the FE benchmark showed that 

the detailed modeling of the non-linear interfacial behavior between steel and concrete is not 

essential for predicting the load-carrying capacity of the beam as well as the overall energy 

dissipation. Three different sizes of HSTCBs were simulated under three-point loading, 

showing two principal failure mechanisms, namely the flexural failure at the mid-span and the 

shear failure along the diagonal direction. 

The qualitative analysis of the size and geometrical effects on the load-carrying capacity of 

the beam showed a combination of the two individual size effects of these failure modes. In 

particular, for diagonal shear failure, the size effect was described by using the classical 

Bažant’s size effect law of quasibrittle fracture while, in ductile flexural failure, the size effect 

was derived by a simple plastic analysis. A transition was observed between these two size 

effects influenced by the 3D geometry of the steel joist and the fracture property of concrete. 

It was finally found that a robust computational modeling is required for the design 

extrapolation of HSTCBs across different sizes and geometries as well as for the analytical 

modeling of the complete size effect in HSTCBs. 
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