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Abstract. Gassner et al. (Split form nodal discontinuous Galerkin schemes with summa-
tion - by - parts property for the compressible Euler equations. Journal of Computational
Physics, 327:3966, Dec. 2016) proposed a promising alternative stabilization technique
for the discontinuous Galerkin scheme, which relies on the reformulation of the non-linear
advection terms into split forms. It has been observed, that these split forms can stabilize
the inviscid Taylor Green Vortex with high-order approximations, which are unstable with
over-integration.

In this paper, we apply different split form discontinous Galerkin schemes for the
implicit large eddy simulation of a fully developed turbulent channel flow and investigate
their robustness and accuracy for wall-bounded flows. Furthermore, we compare these
results to implicit large eddy simulation with over-integrated high-order approximations
in terms of statistical values and turbulence spectra. Finally, we show that the use of
high-order split form discontinuous Galerkin scheme can significantly improve the results
in comparison to low-order discretizations.

1 INTRODUCTION

Through the increasingly severe requirements on emission and noise pollution of modern
turbomachinery, there is a high demand for new and more efficient engine technologies. To
further progress the improvements of such technologies, more precise numerical methods
are required in order to accurately investigate turbomachinery flows. With the known pre-
dictive deficiencies of unsteady Reynolds averaged Navier-Stokes (URANS) simulations,
which are currently the state-of-the-art simulation methodology in the design process of
turbomachinery, and the increasing computational ressources, scale-resolving simulations,
e.g. large eddy simulations (LES), are becoming more popular methods to further study
the unsteady phenomena of complex flows [1]. Due to efficiency advantages for highly
accurate simulations and favorable dissipation/dispersion properties, high-order spatial
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discretizations, such as the discontinuous Galerkin (DG) method, are attractive numer-
ical methods for LES. Precisely, the dissipation errors of the DG method only have an
impact on higher wavenumber, leaving low and medium frequencies unaffected, cf. [2, 3].
This inherent property of the DG scheme leads to a dissipation of the smallest scales.
Therefore, a common LES approach within the DG community is to perform an implicit
LES (iLES), where no explicit subgrid-scale model is used and the dissipation is entirely
realized by the numerical discretization scheme, [4, 5].

As it turns out, the stabilization provided from the upwind dissipation typically used in
DG schemes is insufficient for under-resolved turbulent flows. Especially, high polynomial
approximation orders with their lower inherent dissipation are often unstable without
an additional stabilization mechanism. However, it can be noted that it is possible to
achieve reasonably accurate results for under-resolved turbulent flows with high-order
DG approximations when a proper stabilization technique is applied [6].

One of the most popular stabilization strategies in the DG community is polynomial
de-aliasing, often also denoted as over-integration [7]. The mechanism focusses directly on
the source of the numerical instabilities, the under-integration of the non-linear advective
flux terms, by increasing the number of integration nodes according to the non-linearity.
Nevertheless, when we apply the DG ansatz on the conserved quantities, the advective
flux functions of the Navier-Stokes equations cannot be integrated exactly with standard
quadrature rules because they are rational polynomials of the conserved quantities. As a
consequence, Moura et al. show in [3] that even high-order DG discretizations with the
number of quadrature nodes increased by a factor of four in each spatial direction are
unstable for the under-resolved simulation of the inviscid Taylor-Green-Vortex.

Recently, a very promising stabilization technique for the nodal DG scheme has been
proposed by Gassner et al., which is in fact able to stabilize the inviscid Taylor-Green-
Vortex [8]. It is based on the diagonal-norm summation-by-parts (SBP) property of the
discontinuous Galerkin spectral element method (DGSEM) with Legendre-Gauss-Lobatto
(LGL) nodes and relies on the reformulation of the advective flux terms into an average
of the conservative and advective forms. In [9], it is shown for a frozen burgers turbulence
scenario that through using an average of the conservative form, which overestimates the
energy at higher wavenumbers, and the advective form, which underestimates the energy
at higher wavenumbers, the aliasing errors are balanced. The authors believe that this
mechanism helps improve the robustness in under-resolved simulations by keeping the
growth of the energy under a certain level. Furthermore, in the same article, the accuracy
of a split form DG scheme has been compared to an over-integrated DG discretization for
the inviscid Taylor-Green-Vortex. Both stabilization techniques showed similar results for
moderate high-orders (around sixth order).

In this paper, we apply different split form DG schemes for an iLES of a fully devel-
oped turbulent channel flow and investigate their robustness and accuracy. Additionally,
we compare these results to simulations with over-integrated DG schemes in terms of
statistical quantities and turbulence spectra. All investigated schemes are integrated into
DLR’s in-house solver for turbomachinery flows TRACE, which is developed at DLR’s
Institute of Propulsion Technology.
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2 NUMERICAL METHODS

2.1 Governing equations

Three-dimensional compressible flow is described by the Navier-Stokes equations, which
can be expressed in conservation form as

∂q

∂t
+∇x · F (q,∇xq) = 0, (1)

with suitable initial and boundary conditions. Here, q denotes the conservative state
vector q = (ρ, ρu1, ρu2, ρu3, ρE)T with u = (u1, u2, u3) and ∇x is the gradient operator
in physical space. The physical flux F is equal to the difference of advective and viscous
fluxes, F = F a(q)− F v(q,∇xq), which are defined as follows

F a
l =


ρul

ρu1ul + δ1lp
ρu2ul + δ2lp
ρu3ul + δ3lp

ρHul

 , F v
l =


0
τ1l
τ2l
τ3l

τljvj − ql

 , (2)

where l = 1, 2, 3 are the Cartesian components of the physical flux F = (F1,F2,F3). The
pressure p is related to the other thermodynamic variables by the equation of state for an
ideal gas, which is p = (γ − 1)ρ [E − 1/2(u · u)], where γ = 1.4 is the ratio between the
specific heats of the fluids. The total enthalpy H is equal to H = E + p/ρ.

2.2 Discontinuous Galerkin discretization

This work focusses on a special case of the DG method, namely the DGSEM, which is
based on a collocation of integration and interpolation nodes. With the use of LGL points
as nodes, the resulting DGSEM operator has the SBP property, which is the fundamental
key for deriving the split form nodal DG scheme, [10, 8].

The domain is subdivided into shape-regular meshes Th = {K} consisting of non-
overlapping elements K, where h denotes a piecewise constant mesh function. For each
element K ∈ Th, we define a polynomial continuous invertible mapping MK to a reference
element Kref with x = MK(ξ), where x = (x, y, z) are the Cartesian coordinates and
ξ = (ξ, η, ζ) are the generalized coordinates of the reference element Kref, cf. [11, 12]. The
mapping is used to transform (1) from the physical space into the reference space, which
results in

Jqt +∇ξ ·F(q,∇xq) = 0, (3)

where J is the Jacobian determinant J(ξ) = det
(
∂x
∂ξ

)
and F is the contravariant flux. The

metric terms are constructed following [13] to ensure the free-stream preserving property.
For brevity, we restrict this presentation to Cartesian meshes as they are used in our
computations. The extension to general curvilinear grids can be found in [8].
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Thereafter, the solution vector q is approximated as piecewise polynomial functions
and can be expressed by the polynomial expansion

qh(ξ, t)|K =
N3∑
n=0

qn(t) φNn (ξ) ∀K ∈ Th, (4)

where the 3D polynomial basis function φNn = lNi (ξ)lNj (η)lNk (ζ) is constructed in a tensor
product fashion with 1D Lagrange polynomials lNi of degree N . Following that we multi-
ply (3) by a sufficiently smooth test function v, use the same ansatz for the test function
v as for the solution (4), integrate by parts and test only against the basis function φNm
for all m = 0 . . . N3. This yields in∫

Kref

J (qh)t φ
N
mdξ +

∫
∂Kref

φNm (Ha −Hv) dS −
∫
Kref

F(qh,∇xqh) · ∇ξφ
N
mdξ = 0. (5)

Here, Ha and Hv denote the surface normal numerical flux function for the advective
and viscous terms, respectively. In this work, we apply the local Lax-Friedrichs or Roe’s
approximative Riemann solver for the advective part, cf. [14]. Furthermore, the dis-
cretization of the viscous terms is based on the Bassi and Rebay 2 (BR2) method [15].
The scheme provides an additional artificial dissipation term depending on the jump of
the solution at the element interfaces, which can be controlled by a penalty constant ηBR.
The constant is set to ηBR = 6 for all cases shown.

As stated above, we apply a nodal collocation approach, where we use LGL nodes as
integration and interpolation points, cf. [16]. This choice gives rise to an highly efficient
scheme as many numerical operations can be omitted, [17]. For example, the 1D mass
matrix gets lumped in the following form

M = diag[ω0, . . . , ωN ], (6)

where {ωi}Ni=0 are the LGL quadrature weights. In contrast to the above advantages,
due to limited precision of the integration and the non-linearity of the advective flux,
the scheme is less accurate and can be unstable for under-resolved simulations [6]. A
straightforward approach to address this problem is to increase the number of integration
points, which is known as over-integrated DGSEM. We follow the procedure described
in [6], where the overall polynomial degree M is increased according to the desired number
of integration points. The approximate solution is then filtered by a modal cut-off filter
before every Runge-Kutta stage to retain only the original number of degrees of freedom
(DOF), i.e. (N + 1)3 in each element. However, the key of this work is the split form
DGSEM, which will be derived in the following.

2.3 Split form DG scheme

The scheme is based on the splitting of the advective flux terms. Thus, we separate

the advective contributions F̃a
=
(
F̃a

1, F̃
a

2, F̃
a

3

)
and the viscous contributions F̃v

of (5),
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resulting in

∫
Kref

J (qh)t φmdξ +

F̃ a︷ ︸︸ ︷[∫
∂Kref

φmHadS −
∫
Kref

Fa(q) · ∇ξφmdξ

]
(7)

−
[∫

∂Kref

φmHvdS −
∫
Kref

Fv(q,∇xq) · ∇ξφmdξ

]
︸ ︷︷ ︸

F̃ v

= 0.

The advective contributions of each nodal coefficients (i, j, k) in ξ-direction can be rewrit-
ten in a strong form, i.e. performing another integration-by-parts, as(

F̃a

1

)
ijk

=
1

Mii

[δiN(Ha −Fa
1)Njk − δi0(Ha −Fa

1)0jk] +
N∑
n=0

Din (Fa
1)njk . (8)

The remaining directions follow analogously, [16, 8]. Here, D is the 1D polynomial deriva-
tive matrix,

Dij =
∂lj(ξi)

∂ξ
, i, j = 0, . . . , N, (9)

where {ξi}Ni=0 are the LGL nodes. As mentioned before, the derivative operator D of the
LGL approximation satisfies the diagonal-norm SBP property. Based on this property,
Fischer et al. [18] and Carpenter et al. [10] constructed an entropy-conservative form
of the volume terms by applying a two-point entropy conserving numerical volume flux
Fa,#

1 (qijk, qmjk). Thus, (8) can be rewritten in an entropy conservative/stable form given
by (

F̃a

1

)
ijk

=
1

Mii

[δiN(Ha −Fa
1)Njk − δi0(Ha −Fa

1)0jk] + 2
N∑
n=0

DinFa,#
1 (qijk, qnjk) .

(10)

Gassner et al. showed that it is possible to use any symmetric and consistent two-point
numerical volume flux and each choice results in a novel variant of DGSEM [8]. Fur-
thermore, the authors identified choices of the numerical volume flux resulting in well
known split forms. In this work, we apply the split forms of Ducros [19] and Kennedy
and Gruber [20], which can be written as a numerical volume flux [8]

Fa,#
1,Ducros (qijk, qnjk) =


{{ρ}}{{u1}}

{{ρu1}}{{u1}}+ {{p}}
{{ρu2}}{{u1}}
{{ρu3}}{{u1}}

({{ρE}}+ {{p}}){{u1}}

 , (11)
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Fa,#
1,KennedyGruber (qijk, qnjk) =


{{ρ}}{{u1}}

{{ρ}}{{u1}}{{u1}}+ {{p}}
{{ρ}}{{u1}}{{u2}}
{{ρ}}{{u1}}{{u3}}

{{ρ}}{{u1}}{{E}}+ {{p}}{{u1}}

 . (12)

Here, {{·}} is the spatial average of a quantity, i.e. {{a}} := 1
2
(aijk+anjk). Regarding the

numerical surface flux function, we replace the central flux with the specific split form flux,
but keep the upwind dissipation term of the applied Riemann solver, i.e. Lax-Friedrichs
or Roe. Finally, we employ an explicit third-order accurate Runge-Kutta time-stepping
method with a constant time step to advance in time.

3 IMPLICIT LES OF A TURBULENT CHANNEL FLOW

In this work, we investigate the numerical schemes for the iLES of a fully developed
turbulent channel flow. A computational domain of 2πδ× 2δ×πδ is chosen with periodic
boundary conditions in stream- (x) and spanwise (z) direction, whereby δ is half of the
channel height. A constant body force source term in the streamwise momentum equation
is used to enforce the Reynolds number Reτ = δuτ/ν = 395 based on the friction velocity
uτ . A Mach number of Ma = 0.1 is chosen to be comparable to the incompressible DNS
results of Iwamoto et al. [21]. All simulations are performed on a fairly coarse grid with
64 × 64 × 64 DOF with a grid stretching in the wall-normal direction. The resulting
effective grid spacing, which is defined as huτ/ν/(N + 1), for different polynomial orders
N is given as ∆x+,N=3,7,15 ≈ 39, ∆z+,N=3,7,15 ≈ 20, ∆y+,N=3

min ≈ 1.3, ∆y+,N=7
min ≈ 2.0,

∆y+,N=15
min ≈ 3.85. Furthermore, the flow field is initialized with a superposition of a RANS

solution and synthetic generated turbulent velocity fluctuations computed following [22].
In order to reach a converged state, a transient phase of 20 eddy turnover times (ETT
= tuτ/δ) is simulated. Following that, the flow quantities are averaged over another 20
ETT.

Firstly, we consider a polynomial approximation order of N = 7, resulting in a mesh
of 8 × 8 × 8 elements. If not stated otherwise, Roe’s Riemann solver is used in the
simulation. Remark that simulations with high-order DGSEM scheme for the test case
and this mesh resolution become unstable if no stabilization technique is applied [23].
In Figure 1, the normalized mean streamwise velocity profile U+ and the root-mean-
square (RMS) of the velocity fluctuations are shown over the normalized wall coordinate
y+ for the KennedyGruber scheme, Ducros scheme and the over-integrated DGSEM with
M+1 = 12 integration points. M denotes the polynomial order of the over-integrated sim-
ulation as described in Section 2.2. Despite the coarse resolution, all applied stabilization
mechanisms yield in stable and accurate results compared to the DNS data. Moreover,
the profiles obtained with KennedyGruber and Ducros scheme are nearly perfectly equal.
Comparing the split form results and the over-integrated DGSEM results, one can ob-
serve that the over-integrated scheme predicts the streamwise velocity fluctuations more
accurately, especially in the buffer layer. On the contrary, the mean velocity profiles of
the split forms are closer to the DNS data. This is most likely to an over-prediction of
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Figure 1: ILES of a turbulent channel flow at Reτ = 395. Mean streamwise velocity profiles U+ (left)
and RMS turbulent velocities u′+

RMS, v′+RMS, w′+
RMS and shear stresses u′v′ (right) of DGSEM with Kennedy

Gruber split form (blue solid with circles), DGSEM with Ducros split form (red dashed with squares) and
over-integrated DGSEM with an over-integration order of M = 11 (green dash dotted with circles).

the streamwise velocity fluctuations, which results in an increase of the mean velocity.
However, especially in the outer layer of the streamwise components, discrepancies to the
DNS data are visible for all shown computations, i.e. u′+rms around y+ ≈ 130.

To further analyze the stabilization methods, the one-dimensional energy spectrum in
the streamwise direction over the wavenumber k is shown in Figure 2. In order to obtain
the spectrum, we probed the quantities over time at equally distanced points along multi-
ple lines in the streamwise direction at y+ = 390. The number of points was equal to the
number of DOF in each direction, i.e. [(N + 1) · nElement] and we applied a cell-centered
distribution inside of each element, which is xi = (i− 1/2)h/(N + 1), to avoid probing at
element interfaces. Hereinafter, we merged all 1D probes of the specific channel height,
i.e. y+ = 390, computed the two-point correlations and performed a discrete Fourier
transformation of the two-point correlation. Following that, the spectra are plotted up to
the theoretical Nyquist frequency. Remark that the resolution of polynomials is theoret-
ically limited to π points per wavelength (PPW), which results in a cut-off wavenumber
of kc ≈ 20.4 for 64 DOF.

The energy spectra, shown in Figure 2, exhibit a strong drop off of energy in the
inertial range, which is a typical behavior for upwind based iLES discretization with a
Roe’s Riemann solver [24]. Additionally, the cut-off wavenumber k1d1% according to the
1% rule is plotted, after which the numerical dissipation of the DG scheme becomes
relevant, cf. [2, 3]. Despite the fact that the 1% rule was derived for inviscid test cases
while this test case features a finite Reynolds number with additional molecular viscosity,
k1d1% is in quite good accordance with the observed energy drop off. Furthermore, it
is interesting to note that the obtained spectra are almost equal for all stabilization
techniques considered. The numerical dissipation starts within the same points in the
inertial range for all schemes. The similarity of the energy spectra of split form DGSEM
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Figure 2: ILES of a turbulent channel flow at Reτ = 395. One-dimensional energy spectra in the
streamwise direction of the streamwise velocity Euu at y+ = 390 obtained with DGSEM with Kennedy-
Gruber split form (blue solid with circles), DGSEM with Ducros split form (red dashed with squares) and
over-integrated DGSEM with an over-integration order of M = 11 (green dash dotted with circles).

and over-integration was also observed in [9] for the inviscid Taylor-Green-Vortex. The
same behavior of the schemes is also visible in the energy spectra near to the wall (not
shown). The only minor discrepancies between the stabilization techniques emerge after
the cut-off wavenumber kc, where the energy bump of the split forms is slightly higher than
the one of the over-integrated DGSEM. As a next investigation, the results for variable
approximation orders on the same mesh with 64×64×64 DOF are displayed in Figure 3.
It is remarkable that even the very high-order approximation (N = 15) is stable for
this considered under-resolution. The standard Legendre-Gauss (LG)-DGSEM is shown
here, because it is the highest stable approximation order on this resolution without any
stabilization technique applied, cf. [23]. Anyway, a clear trend in the solution quality
with increasing order is visible. The low-order version of KennedyGruber DGSEM and
standard LG-DGSEM over-predict the streamwise velocity fluctuations by a big amount.
On the contrary, the very high-order DGSEM with N = 15 under-predicts the peak of the
streamwise velocity fluctuations and shows larger discrepancies in the buffer layer than
the 8th order DGSEM. Also differences to the DNS data can be observed in spanwise
Reynold stresses. One reason for this could be the insufficient wall resolution due to
the use of linear elements as y+min rises with increasing polynomial order. This could be
improved by adjustments of the inner element stretching, e.g. use of high-order geometry
approximation. Nevertheless, the N = 15 results are closest to the DNS data in the outer
layer. Looking at the energy spectrum in Figure 3, we see a clear improvement of the
numerical dissipation of the scheme as the range of affected wavenumbers is decreased
with increasing polynomial order. The start of the influence of the numerical dissipation
is in good accordance with the proposed one-dimensional cut-off wavenumber of the 1%-
rule k1d1%. Additionally, one can observe that the magnitude of the peak after kc decreases
with increasing polynomial orders.
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Figure 3: ILES of a turbulent channel flow at Reτ = 395. RMS turbulent velocities u′+
RMS, v′+RMS,

w′+
RMS and shear stress u′v′ (left) and one-dimensional energy spectra in the streamwise direction of the

streamwise velocity Euu (right) at y+ = 390 obtained with DGSEM with KennedyGruber split form and
N = 3 (cyan dashed with diamonds), N = 7 (blue solid with circles), N = 15 (red dashed with circles)
and LG-DGSEM N = 3 without stabilization (cyan solid with triangles).
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Figure 4: ILES of a turbulent channel flow at Reτ = 395. RMS turbulent velocities u′+
RMS, v′+RMS,

w′+
RMS and shear stress u′v′ (left) and one-dimensional energy spectra in the streamwise direction of the

streamwise velocity Euu (right) at y+ = 390 of DGSEM with Roe’s (blue solid with circles) and with
Lax-Friedrichs (LLF) dissipation term (red dashed with diamonds).

Finally, we consider the results obtained with KennedyGruber (KG) split form and
different Riemann solvers, namely Roe and local Lax-Friedrichs, see Figure 4. Especially in
the streamwise and spanwise turbulent velocity fluctuations, larger differences compared
to the DNS results can be obtained for the Lax-Friedrichs solver. Aside from that, the
wavenumber at which the streamwise energy drops sharply is fairly identical for both
Riemann solvers. However, the magnitude of the drop-off is different. Higher energy at
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the cut-off wavenumber are present for the Lax-Friedrichs solver. Similar trends are also
shown in [3], in which the authors stated that the observed ’energy bump’ for schemes
with Lax-Friedrichs solver emerges due to the sharper dissipation behavior in wavenumber
space.

4 CONCLUSION

In this work, we applied two split form DG schemes, namely Ducros and KennedyGru-
ber, for the implicit LES of a turbulent channel flow with a Reynolds number of Reτ = 395.
On the coarse mesh resolution, the standard DGSEM with LGL nodes crashes with an
approximation order greater than N > 2. Both split forms are able to stabilize the simu-
lation with a high order approximation. Moreover, the statistical quantities obtained with
both split form DG schemes are in good accordance with the DNS results considering the
coarse mesh resolution. Comparing the results with the over-integrated DGSEM, one can
observe slight advantages of the over-integrated DGSEM due to the higher precision of
integration. The obtained one-dimensional energy spectra for both stabilization strate-
gies are nearly identical up to the cut-off wavenumber. Furthermore, we showed that one
can improve the results when increasing the approximation order of the split form DG
scheme. Especially the range of unaffected wavenumbers is increased when using a high
order approximation. However, the use of linear elements without inner element stretch-
ing in combination with a very high approximation order, i.e. N = 15 probably results in
an insufficient near-wall resolution.

We plan to extend the investigation of stabilization strategies to more complex test
cases with higher Reynolds numbers. Here, one key observation is the performance of the
split forms on curvilinear grids, i.e. curved elements, where geometric aliasing errors oc-
cur. Furthermore, compressible effects should also be considered in the upcoming studies.
Beyond that, a novel LES approach by Flad and Gassner [24], where an energy-preserving
split form DG scheme without additional interface dissipation is combined with an ex-
plicit subgrid-scale model, shows significant advantages over iLES results and could be a
promising strategy for future LES of more complex cases.
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