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Abstract. The aim of the paper is to present a novel approach for the analysis of
underground excavation problems. Non-Uniform Rational B-Spines (NURBS) are used
for the description of the geometry and for the approximation of the unknowns. The
resulting equation system with the IGABEM has much fewer unknowns than conventional
BEM approaches and an excellent solution quality is obtained. NURBS are also used for
the geometrical description of geological inclusions, which can have properties different
to the surrounding rock mass and can exhibit inelastic material behaviour. This will
be domonstrated on a practical example in geomechanics, a 3-D simulation of a cavern
excavation of a hydropower station.

1 INTRODUCTION

For the numerical analysis of problems in geomechanics the Boundary Element Method
(BEM) is ideally suited as it can easily consider infinite or semi-infinite domains, since
the radiation condition is implicitly fulfilled. Assuming the case of elastic, homogeneous
domains only boundary integrals appear, thereby reducing the analysis effort by an order
of magnitude.

However, for the study of realistic problems the consideration of heterogeneous and
inelastic ground conditions is essential. The equation system of the BEM can be extended
to analyse these problems, but additional volume integrals appear and the attractiveness
of the method is reduced. However, the volume integrals only cover the part of the
domain that has different material properties or exhibits inelastic behaviour. Currently
the most popular method is to use internal cells for the volume discretization. Cells are
basically identical to Finite Elements but the main difference is that no additional degrees
of freedom are introduced, as their only purpose is to evaluate the volume integral. The
requirement for an additional volume discretization seems to have severely restricted the
application of the BEM in geomechanics, with the Finite Element method or similar
domain methods dominating. In this paper it will be shown how piecewise heterogeneous,
inelastic domains can be analyzed without a cell mesh, thereby enhancing the applicability
of the method for problems in geomechanics.
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Isogeometric analysis [1] has gained significant popularity in the last decade because of
the fact that geometry data can be taken directly from Computer Aided Design (CAD)
programs, potentially eliminating the need for mesh generation. NURBS basis functions,
that are used for the definition of the geometry, are able to describe certain geometries
such as arcs exactly. Therefore, as will be shown, the number of parameters, required
to accurately define geometry, can be reduced significantly. In this work we will apply
NURBS also for the definition of geological inclusions.

2 BOUNDARY ELEMENT METHOD WITH VOLUME EFFECTS

For the consideration of heterogeneous and inelastic properties body force effects have
to be included in the formulation of the BEM. Applying Betti’s theorem explained in
[2], the boundary integral equation with body forces, acting in a sub-volume V0 of the
domain, can be written in incremental form as (see Figure 1):

c u̇ (yn) =

∫
S

U (yn,x) ṫ (x) dS +

∫
S0

U (yn, x̄) ṫ0 (x̄) dS0 (1)

−
∫
S

T (yn,x) u̇ (x) dS +

∫
V0

U (yn, x̄) ḃ0 (x̄) dV0

where c is the free term, U(yn,x) and T (yn,x) are matrices containing fundamental
solutions (Kernels) for the displacements and tractions at a point x due to a unit force
at a point yn [3], u̇(x) and ṫ(x) are increments of the displacement and traction vectors
at point x of the surface S defining the problem domain. ḃ0(x̄) are increments of body
force inside the inclusion V0 and ṫ0(x̄) are increments of tractions related to the body
force acting on surface S0 bounding V0.

The integral equations can be solved for the unknowns u̇ or ṫ by discretization. As
in the majority of previous work on the isogeometric BEM [4, 5, 6, 7, 8, 9] we use the
collocation method, i.e. we write the integral equations for a finite number, N , of source
or collocation points yn, with n = {1, . . . , N}.
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Figure 1: Explanation of the derivation of the integral equation with volume effects
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3 DISCRETISATION

3.1 Geometry description

The definition of the boundary geometry is:

xe(s, t) =
K∑
k=1

Rk(s, t) · xe
k (2)

where xe
k are coordinates of control points and e indicates a patch. Rk(s, t) are the NURBS

functions of local coordinates s, t which are:

Rn = Rp,q
i(n),j(n) (3)

where i(n) and j(n) are indices of the n-th control point. The NURBS functions of order
p in the local s-direction and order q in t-direction are defined as:

Rp,q
i,j =

Bi,p(s) ·Bj,q(t) · wi,j

W
(4)

where wi,j are weights and

W =
J−1∑
j=0

I−1∑
i=0

Bi,p(s) ·Bj,q(t) · wi,j (5)

Bi,p(s) and Bj,q(t) are B-spline functions.
In order to model problems where a surface extend to infinity in t-direction (used in the
3D example later) we introduce infinite basis functions defined by [8]:

R∞,p
i,j (s, t) = Rp

i (s) B
∞
j (t) · · · j = 1, 2 (6)

where

B∞1 = (1− 2t)/(1− t) (7)

B∞2 = t/(1− t)

3.2 Description of boundary values

The following approximations for the displacements and tractions are used:

ue(s, t) =
K∑
k=1

Ru
k(s, t) · ue

k te(s, t) =
K∑
k=1

Rt
k(s, t) · tek (8)

where Ru
k , R

t
k are the basis functions. In this work we follow the geometry independent

field approximation approach as first published in [7]. This means that the basis functions
for describing the geometry are first taken for approximating the unknown and then
refined, with the geometry description (already accurate) remaining unchanged. This is
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in contrast to conventional modelling approaches which involve the refinement of a mesh
which means that both the geometry and the approximation of the unknown is refined.

For the refinement of the approximation Order elevation, Knot insertion and K-refinement
[3] are available. Since the concept of nodal point values is replaced by parameters, an-
chors are defined that link each basis function to a location on the geometry. We also
use these points as collocation points. After the discretisation of the integral equations
we obtain the following system of equations for excavation problems:

[T] {u} = {F}+ {F}0 (9)

where [T] is an assembled matrix with coefficients related to Kernel T and {u} is a vector
that collects all displacement components on points yn. {F} is a vector related to the
applied tractions due to excavation and {F}0 = {F}S0

0 + {F}V0
0 is the right hand side

related to the body force effects, i.e. related to the integrals over S0 and V0 in Equation
(1). Details of the implementation of the isogeometric BEM for elastic homogeneous
domains can be found in [3].

4 Inclusions - Geological features

In the following we extend the capabilities by considering inclusions that have different
material properties and/or may exhibit non-linear material behaviour. As stated earlier
volume effects will appear, that have to be dealt with.

The basic approach is to use an iterative solution method. In a first step the problem
is solved considering an elastic homogeneous domain. Then the solution is modified to
account for the presence of inclusions. The procedure is similar to the initial stress method
used in the Finite Element work and can be summarized as follows:

1. Solve the elastic, homogeneous problem and determine the stress σ̇ inside the in-
clusion V0.

2. Determine an increment of initial stress σ̇0 due to the fact that the elastic material
properties of the inclusion are different from the ones used for the surrounding
domain and/or due to the fact that the elastic limit has been exceeded.

3. Convert σ̇0 to body force and traction increments ḃ0, ṫ0.

4. Compute new right hand side by evaluating the arising volume and surface integrals.

5. Solve for the new right hand side and compute the new stress σ̇ inside the inclusion.

6. Repeat 2. to 5. until σ̇0 is sufficiently small.

4.1 Elastic inclusions

Elastic inclusions can be modeled with the multi-region method (see for example [2, 10])
and this involves an additional discretization and increases the number of unknowns. Here
we include their treatment in the iterative process required for plasticity.
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To compute the initial stress increment for the case where the inclusions have elastic
properties which are different to the ones used for the surrounding domain we use the
relation between stress σ̇ and strain ε̇ in Voigt notation

σ̇ = C ε̇ (10)

ε̇ = C−1 σ̇ (11)

where C is the constitutive matrix for the surrounding domain. The difference in stress
between the inclusion and the domain and therefore the initial stress increment can be
computed by

σ̇0 = (Ci −C) ε̇ (12)

where Ci is the constitutive matrix for the inclusion.

4.2 Inelastic behavior

If the inclusion experiences inelastic behavior then additional initial stresses are gen-
erated. Here we use the concept of visco-plasticity. In visco-plasticity we specify a visco-
plastic strain rate

∂εvp

∂t
=

1

η
Φ(F )

∂Q

∂σ
(13)

where η is a viscosity parameter, F is the yield function, Q the plastic potential [11]. It
holds that

Φ(F ) = 0 for F < 0 (14)

Φ(F ) = F for F > 0. (15)

The visco-plastic strain increment during a time increment ∆t can be computed by an
explicit scheme

ε̇vp =
∂εvp

∂t
∆t. (16)

The time step ∆t can not be chosen freely and if chosen too large, oscillatory behavior
will occur in the solution. Suitable time step values can be found in [12]. The initial
stress increment is given by

σ̇0 = C ε̇vp. (17)

5 Inclusions - Geometry definition

For the description of the geometry of the subdomain V0 it is proposed to use a mapping
method introduced recently in [7] and [3].With this method the domain of an inclusion is
defined by two NURBS surfaces and a linear interpolation between them. All computa-
tions, such as integration and differentiation, are performed in a local coordinate system
s = (s, t, r)ᵀ = [0, 1]3 shown in Figure 2 which is then mapped to the global x, y, z-system.
The global coordinates of a point x with the local coordinates s are given by

x(s, t, r) = (1− r)xI(s, t) + rxII(s, t) (18)
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where

xI(s, t) =
KI∑
k=1

RI
k(s, t) xI

k and xII(s, t) =
KII∑
k=1

RII
k (s, t)xII

k . (19)

The superscript I relates to the bottom (red) surface and II to the top (green) surface
and xI

k, xII
k are control point coordinates. KI and KII represent the number of control

points, RI
k(s, t) and RII

k (s, t) are NURBS basis functions. It should be noted that in this
mapping approach the bottom and top surfaces may have a different number of control
points.
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Figure 2: Left: inclusion in global coordinate system, bounding surfaces are colour coded
Right: the local map

The derivatives with respect to the local coordinates are given by

∂x(s, t, r)

∂s
= (1− r) ∂x

I(s, t)

∂s
+ r

∂xII(s, t)

∂s
∂x(s, t, r)

∂t
= (1− r) ∂x

I(s, t)

∂t
+ r

∂xII(s, t)

∂t
∂x(s, t, r)

∂r
= −xI(s, t) + xII(s, t)

(20)

where for example:

∂xI(s, t)

∂s
=

KI∑
k=1

∂RI
k(s, t)

∂s
xI
k and

∂xII(s, t)

∂s
=

KII∑
k=1

∂RII
k (s, t)

∂s
xII
k . (21)

The Jacobian matrix of this mapping is

J =


∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂r

∂y
∂r

∂z
∂r

 (22)
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and the Jacobian is J(s) = |J|. A detailed description of the volume integration and the
integration over the surface of the inclusion can be found in [13].

6 TEST EXAMPLES

In the following the theory is tested on examples and the results are compared with
solutions obtained by a coupled Boundary Element/Finite Element (BEFE) method.

6.1 Circular excavation with elastic inclusion

This tests the ability of the method to model inclusions that have different elastic
properties. The excavation is performed under a stress field of σx = 0, σy = 0, σz =
-1 Mpa, i.e. the appropriate Neumann boundary conditions are applied.

   E1   

   E2   
1

0.2

1

(a) Left: Cross-section of the excavation
with inclusion.
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(b) Geometry description with finite and
infinite NURBS patches.

Figure 3: Geometry of circular excavation problem

The diameter of the cylindrical excavation shape is 2 m and the modulus of elasticity
of the domain is E2 = 10 MPa. The horizontal inclusion has a modulus of elasticity of
E1 = E2/10 and as shown in the cross-section in Figure 3a extends to 1 m each side of
the excavation. The description of the geometry of this problem is shown in Figure 3b
and consists of 4 finite patches with order 2 in the finite direction and order 1 in the
infinite direction. There are 8 matching infinite plane strain patches that simulate the
infinite extent. The displacements were assumed to be constant in the infinite direction
simulating plane strain conditions.

The inclusions were described by linear surfaces as shown in Figure 4a. Six internal
points were used in the y- direction, assuming a constant variation in x- and z-direction.
For the approximation of the unknown, two knots were inserted at the intersections with
the inclusion, allowing the continuity to be decreased there from C1 to C0. The resulting
collocation points are shown in Figure 4b. The convergence of the maximum displacement
at the top of the excavation is shown in Figure 5a and compared with a BEFE solution.
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(a) Description of the geometry of the inclu-
sions with 8 control points each
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(b) Location of collocation points.

Figure 4: Geometry of inclusion
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(b) Convergence - inelastic inclusion.

Figure 5: Convergence - circular tunnel

6.2 Circular excavation with inelastic inclusion

This tests the ability of the method to model inclusions that behave in an inelastic way.
This time a different virgin stress field is used, namely σx = −0.5, σy = −0.5, σz = -1 Mpa.
A Drucker-Prager yield condition is applied for the inclusion, with angle of friction φ = 30◦

and a cohesion of c = 0. A non-associate flow law is used with a dilation angle ψ = 0◦.
The convergence of the maximum displacement at the top of the excavation is shown in
Figure 5b and compared with a BEFE solution.

6.3 Practical example - Underground Power Station Cavern

The practical example is similar to the one that has been simulated with BEFE and
reported in [2]. It relates to the analysis of an underground power station cavern. Here

8
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we simulate plane strain conditions. Figure 6a shows a sketch of the final excavation
stage together with the geology, which basically consists of mudstone, sandstone and
conglomerate. The mudstone is the weakest material and has the most profound effect on
the ground behaviour. Therefore only these have been considered as inelastic inclusions
with different material properties in the simulation.

(a) Geology
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(b) Definition of Geometry.

Figure 6: Cavern excavation

The material parameters assumed in the simulation are summarised in Table 1. The
depth of the top of the cavern is 310 m. For revisiting the BEFE analysis with the

Table 1: Practical example: Material parameters and stress field

Rock mass
Young’s modulus E =10 GPa
Poisson’s ratio ν =0.20

Inclusion
Young’s modulus Ei =6 GPa
Poisson’s ratio νi =0.25

Mohr-Coulomb yield condition
Angle of friction φ =30◦

Cohesion c =0.73 MPa
Dilation angle: ψ =0◦

Virgin stress field σz0=−0.027*depth MPa
σy0=σx0 ∗ 0.5

novel simulation method, using BEM only we consider an intermediate excavation stage.
Figure 6b shows the definition of the geometry of the cavern with 6 finite and 12 infinite
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NURBS patches. The top 3 patches are of order 2 , the remaining ones of order 1 in s-
direction. All are of order 1 in t-direction. Figure 7a shows the definition of the geological
inclusions by bounding surfaces.

x y

z

(a) Description of geological inclusions,
Bounding surfaces are colour coded and
control points depicted by hollow squares.
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(b) location of collocation points.

Figure 7: Inclusions and collocation points

For the approximation of the unknown the following refinements were made:

• Double knots were inserted into the Knot vector is s-direction at points where the
inclusions intersect, changing the continuity there from C1 to C0.

• Four knots were inserted in patch number 2.

• The order of all patches except the top 3 ones was elevated by one.

The resulting collocation points are shown in Figure 7b. The simulation has 192 degrees
of freedom.
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(a) Displaced shape.
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(b) BEFE mesh

Figure 8: Inclusions and collocation points
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A result of the simulation, namely the displaced shape of the excavation boundary is
shown in Figure 8a. A comparison with BEFE was done. The BEFE mesh used for the
comparision is shown in Figure 8b and consists of 239 twenty-node solid finite elements
and 96 eight-node boundary elements including infinite (plane strain) boundary elements.
A vertical plane of symmetry is assumed. The mesh has 4036 degrees of freedom. The
displaced shapes in the y-z plane are compared in Figure 9. The maximum downward
displacement of the coupled analysis was 0.0248 m and the current analysis 0.0245 m.
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(a) Displaced shape - BEFE.
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(b) Displaced shape - IGA-
BEM.

Figure 9: Inclusions and collocation points

7 CONCLUSIONS

The aim of the paper was to demonstrate that using the isogeometric BEM for the
simulation of underground excavation problems results in an improvement of user friend-
liness and efficiency. NURBS basis functions are used to accurately define the excavation
surface with few parameters and to define geological inclusions. The method was ex-
tended to allow the consideration of inelastic inclusions with properties that are different
to the domain. This required the evaluation of volume integrals and a novel method was
presented that does not involve the generation of a cell mesh. On two test examples it
was shown that solutions, that agree well with a BEFE simulation, can be obtained for
an elastic and elasto-plastic inclusion.

For a practical example a problem was revisited that was simulated with BEFE, namely
the simulation of the Masjed underground cavern. It is shown that comparable results can
be obtained by the novel approach, albeit with a significant reduction in mesh generation
effort and the number of degrees of freedom.

It should be noted that apart from the demonstrated benefits of the NURBS based
BEM another benefit occurs. Since in many instances CAD programs are used to efine
geotechnical projects, there is the possibility to take such geometrical information directly
from CAD data, without the need to generate a mesh.
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