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Abstract. Jet atomizations play a crucial role in many applications such as in cryogenic
combustion chambers. Since direct numerical simulations of these two-phase flows in en-
gine real configurations are still out of reach, predictive numerical tools must be developed
using reduced-order models with sound mathematics properties. The contribution of this
paper is three-fold. First, we introduce a new formalism to symmetrize non-conservative
systems using entropic variables by extending Mock-Godunov theory and apply it to the
Baer-Nunziato model. This new theory broaches new leads to obtain an original Eule-
rian diffuse interface model describing various mixture disequilibrium level based on an
a consolidated mixture thermodynamic. Second, to cope with the strong discontinuities
encountered in jet atomization, a robust and accurate numerical method using multi-slope
MUSCL technique is applied to the various levels of the diffuse interface models. Third,
relying on the previous two points, simulations of a jet atomization in a cryogenic combus-
tion chamber in subcritical conditions are presented using diffuse interface models with
thermal and velocity disequilibria coupled to an Eulerian kinetic-based moment method.

1 Introduction

Jet atomizations play a crucial role in many industrial applications such as in cryogenic
combustion chambers. The multi-scale and various physical phenomena occurring em-
brace high level of complexity and the strong interaction of the latter is a current research
area. In particular, the stability and the efficiency of the engine are extremely correlated
to the way the liquid oxygen is injected and its primary atomization. It may also lead
to high frequencies instabilities which could severely damage the rocket, thus must be
thoroughly studied. Experimentations are conducted to enable simulation validation and
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to understand the observed physical phenomena, but are very costly and restricted in the
range of operating points. Therefore predictive numerical simulations are mandatory, at
least as a complementary tool to understand the physic and even more to conceive new
combustion chambers and predict instabilities they may generate in a given configura-
tion. Focusing on a LOX GH2 cryogenic combustion chamber in a subcritical regime, a
complex two-phase flow takes place between the liquid oxygen and the gaseous hydrogen
injected at the rear center of the chamber through a coaxial injector. Near the injector,
the two phases are separated by a clean interface until high shear stress tears the liquid
core into ligaments which eventually collapse into a spray of droplets. Thus a transition
zone between the separated phase zone and the dispersed phase zone, denoted the mixed
region, involves very complex subscale physics and topologies of the flow. Direct numerical
simulations (DNS) could be used to resolve this elaborate flow and would offer in theory
a full resolution of the interface. Still DNS in a real configuration of a engine are still
out of reach, CPU needs being too high and defining the smallest scale of a two-phase
mixture is still unclear. Thus, predictive numerical tools must be developed through
reduced-order models. Attention must be paid on the mathematics properties and the
predictiveness of such reduced-order models. In the literature, two main strategies are
encountered to build them. (1) coupled models up to three, one adapted for each phase
topology. In the separated phase zone, two approach are found: either two-fluid models
derived by diffuse-interface methods or by front tracking method. The former uses a sta-
tistical averaging of the instantaneous Navier-Stokes equations for each phase [3]. The
latter includes some level of space filtering as done by [13]. As for the dispersed phase
zone, the particles are tracked either in a Lagrangian way [22], or by an Eulerian approach
where the droplets distribution is rebuilt thanks to the method of moments [21]. Usually,
the methods applied to the separated phase zone are extended to the mixed region, but it
implies either a high level of the phase disequilibrium description or a extremely refined
mesh. (2) the complexity of interfacing several models has pushed towards deriving a
unified model coping all the flow regimes as proposed recently in [4] where some sub-scale
phenomena are accounted for in the separated and mixed regions and degenerate into a
predictive spray model in the disperse flow area [6] [5]. In this work, the first approach
has been chosen by coupling a diffuse interface method to a member of the kinetic based
moment methods (KBMM). In [16], the homogeneous two-phase flow model, referred as
the four-equation model, has been used for the two first regimes. However to describe ac-
curately the mixed region and to provide enough informations to feed the polydispersity of
the spray offered by the KBBM candidate, all level of phase disequilibrium must be kept,
that is to say, each phase must have its own pressure, velocity and pressure. Consequently,
the Baer-Nunziato model [1], called the seven-equation model (7eq. model), appears as
the best candidate. Extended by the work of [18] thanks to the introduction of interfacial
quantities, the model writes:

∂tu+ A1∂xu =
R(u)

ε
with A1 = ∂uf(u) + G(u) =

 uI 0 0
g2(u2) ∂u2f(u2) 0
g1(u1) 0 ∂u1f(u1)

 (1)
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where the quasi conservative variables are u = (α2,u2,u1)t, uk = (αkρk, αkρkuk, αkρkEk),
the conservative fluxes f(u) = (αkρkuk, αkρku

2
k + αkpk, αk(ρkEk + pk)uk)

t. G is the ma-
trix containing the non-conservative terms g2(u2) = −g1(u1) = (0, pI , pIuI)

t, αk is the
volume fraction of phase k = 1, 2, ρk the partial density, uk the phase velocity, pk the
phase pressure, Ek = εk + 1/2u2

k the total energy per unit of mass, εk the internal energy
associated usually to a two-parameter equation of state, uI the interfacial velocity and pI
the interfacial pressure, both to be modelled. The two phases can not stay in full disequi-
librium, R is thus an application describing usually the mechanical and hydrodynamic
relaxations between the two phases and is designed by physical processes respecting the
entropy inequality. It decomposes classically onto

R

ε
=
Ru

εu
+
Rp

εp
, with

Ru

εu
=

(
0,
Ru

2

εu
,
Ru

1

εu

)t
and

Rp

εp
=

(
p2 − p1

εp
,
Rp

2

εp
,
Rp

1

εp

)t
(2)

where ε reads as the characteristic time for each of these processes, Ru
2 = −Ru

1 =
(0, u2 − u1, uI(u2 − u1)), Rp

2 = −Rp
1 = (0, 0, pI(p2 − p1)). The mathematical properties

of the 7eq. model have been studied in [9] among others. It is hyperbolic, admits seven
eigenvalues (uI , (uk, uk ± ak)k=2,1) with ak the phase sound of speed, a2

k = ∂pk/∂ρk|sk .
Nonetheless the model is strictly hyperbolic only under the non resonance condition [2].
The interfacial terms uI and pI modelling varies but usually, to facilitate numerical imple-
mentation, conditions have been sought to make λ1 = uI linearly degenerate. Assuming
first that the interfacial velocity uI has a symmetric form uI = βu1 + (1 − β)u2, then
β has no choice but to be defined as β ∈ {0, 1, α1ρ1/ρ} where ρ is the mixture density
ρ = α1ρ1 + α2ρ2. An expression for the relaxation parameters εu and εp have been for
example derived using the DEM technique in [19]. From this 7eq. model , a hierarchy
of two-phase flow models can be obtained: the instantaneous relaxation of the pressures
and the velocities leads to the five-equation model [14]. When relaxing instantaneously
the temperatures through as supplementary relaxing term, one obtains the compressible
Navier-Stokes equations, called also four-equation model. This hierarchy of diffuse inter-
face model is very appealing. The 7eq. model offers a state of full-disequilibrium as long
as adequate relaxing times are used for the relaxation processes. In cryogenic applica-
tions, the pressure of the phases may be considered relaxed instantaneously. However,
due to the strong velocity and temperature gradients at the interface, it is unrealistic
to assume hydrodynamic and thermal instantaneous relaxation. Simulations including a
temperature disequilibrium have already been conducted on real configurations, but it
seems it has never been done with also a velocity disequilibrium [20]. The reason lies in
the difficulty of first defining a momentum interfacial transfer subgrid model and second in
designing robust numerical methods able to cope a non slip velocity. Therefore, we would
like in the first section to deepen the mathematical study of the 7eq. model to better
understand its structure focusing on the relaxation terms. Currently, the latter have been
postulated by physical interpretations and shaped using the entropy inequality. It means
there expression relies on the choice of the entropy and thus on the thermodynamic of a
mixture. So far, the mixture entropy H being widely used leads to the decoupling of the
relaxing phenomena in order to close the model. We propose to symmetrize for the first
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time the hyperbolic Baer-Nunziato model using generalized entropic variables as done for
multi-species Eulerian systems in [17]. It will help to generate general relaxation source
terms compatible with the entropy inequality. In the next section, numerical methods ap-
plied to the coupled models are described emphasizing the relaxation procedure. Finally,
results of numerical simulations are reported ahead of future perspectives.

2 Symmetrization of a non-conservative system using entropic variables

This section recalls first the theory of entropy symmetrization of conservative systems
developed by Mock and Godunov [12]. We then propose a novel extension of this theory
to non-conservative hyperbolic systems (Equation (3)) and apply it on the 7eq. model .

∂tu+ {∂uf(u) + G(u)} ∂xu = R(u)/ε (3)

2.1 Mock-Godunov’s theorem for conservative systems

Mock-Godunov’s theorem stipulates that a conservative hyperbolic Equation (3) (G(u) =
0) may have a symmetric form thanks to a variable change if it has a generalized strictly
convex entropy H with the corresponding fluxes G [12]. The entropy equation writes:

Entropy equation ∂tH + ∂uG(u)∂xu = 0 (4)

The change variable is then v defined by v = ∂uH
t [10]. Taking the scalar product of

Equation (3) (G(u) = 0) and v raises the following compatibility equations:

Compatibility equations ∂uH · ∂uf(u) = ∂uG(u) and v ·R(u)/ε ≤ 0 (5)

Deriving Equation (5) LHS leads to a symmetric condition on the conservative terms:

∂uuH · ∂uf(u) + ∂uH · ∂uuf(u) = ∂uuG(u) (6)

Theorem 1. [11] ∂uuH · ∂uf(u) is symmetric if and only if there is an entropy flux G
associated with the entropy H.

Finally, assuming that the mapping u −→ v is diffeomorph, the quasi linear system using
generalized entropic variables writes:

Ã0∂tv + Ã1∂xv = R/ε (7)

where Ã0 = ∂vu = (∂uuH)−1 and Ã1 = A1 × Ã0 = ∂uf(u) · (∂uuH)−1. Therefore, to
symmetrize a hyperbolic conservative system in the sens of Mock-Godunov, only one
supplementary condition to the Theorem 1 is necessary.
Theorem 2. [11] Given an hyperbolic conservative system, if one of the following con-
ditions holds:

(C1) ∂uuH · ∂uf(u) is symmetric
(C2) there is an entropy flux G associated with the entropy H

then, the symmetrized form in the sens of Mock-Godunov of the hyperbolic conservative
system can be derived if and only if the following condition holds:

(S1) ∂uuH is invertible ⇔ H strictly convex

4
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2.2 Extension to non-conservative hyperbolic systems

A non-conservative hyperbolic Equation (3) may have a symmetric form thanks to a
variable change if it has a generalized strictly convex entropy H with the corresponding
entropy flux G such that the entropy equation writes:

Extended entropy equation ∂tH + ∂uG(u)∂xu = R(u)/ε (8)

Assuming such entropy flux G exists, keeping the same change variable V = ∂uH
t, its scalar

product with Equation (3) LHS raises the following extended compatibility equations:

∂uH
t · {∂uf(u) + G(u)} = ∂uG(u) and v ·R(u)/ε ≤ 0 (9)

The Jacobian of the entropy flux vector, ∂uG, is then decomposed into two components,
a and b, which both contribute to the conservative fluxes f and the non-conservative
terms G, the latter ones being hence decomposed into ∂uf = M1 +N1 and G = M2 +N2.
∂uG(u) is thus finally decomposed into ∂uG(u) = a1 +a2 +b1 +b2 to obtain the following
set of equations and conditions:

∂uH ·Mk = ak, ∂uH · Nk = bk
∂uH · ∂uf = a1 + b1

∂uH ·G = a2 + b2

with the conditions


∂u (a1 + a2) symmetric

b1 + b2 = 0

∂uH
t ·R(u)/ε ≤ 0

(10)

The condition on b implies that ∂uG(u) = a1 +a2. This condition has been chosen due to
the fact that the scalar b (u) ∂xu will not be signable since it is a non-conservative term
and a constant dilatation of time and space (t→ λt, x→ λx) would change it. Applying
Equation (10) to Equation (8) defines an extended compatibility equation with respect
to Equation (5):

Extended Compatibility Equation ∂uH
t · [M1 + M2] = a1 + a2 (11)

and differentiating it, one obtains a new equation imposing symmetry conditions just as
for the conservative systems:

∂uuH · [M1 + M2] + ∂uH · ∂u [M1 + M2] = ∂u (a1 + a2) = ∂uuG(u) (12)

Theorem 3. ∂uuH · [M1 + M2] + ∂uH · ∂u [M1 + M2] is symmetric if and only if there is
an entropy flux G associated with the entropy H

Proof. See proof of Theorem 1

Finally, the quasi linear system using generalized entropic variables writes:

Ã0∂tv + Ã1∂xv = R/ε (13)

where Ã0 = (∂uuH)−1 and Ã1 = [∂uf(u) + G(u)] · (∂uuH)−1. Therefore, to symmetrize
a hyperbolic conservative system in the sens of Mock-Godunov, only two supplementary
conditions to the Theorem 3 are necessary.
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Theorem 4. Given an hyperbolic conservative system, if one of the following conditions
holds:

(C1) ∂uuH · [M1 + M2] + ∂uH · ∂u (M1 + M2) is symmetric
(C2) there is an entropy flux G associated with the entropy H

then, the symmetrized form in the sens of Mock-Godunov of the hyperbolic conservative
system can be derived if and only if the two following conditions hold:

(S1) ∂uuH is invertible ⇔ H strictly convex
(S2) ∂uuH · [M1 + M2 + N1 + N2] must be symmetric ⇔ ∂uH · ∂u [M1 + M2 + N1 + N2]

must be symmetric

Proof. (S1) see proof in Theorem 2. For (S2)

∂uuH · [∂uf(u) + G(u)] must be symmetric to have Ã1 symmetric

=⇒∂uuH · [M1 + M2] + ∂uu [N1 + N2] symmetric

=⇒ ∂uuG(u)︸ ︷︷ ︸
symmetric

−∂uH · ∂u [M1 + M2] + ∂u

(
∂uH · ∂u [N1 + N2]︸ ︷︷ ︸

=0 condition on b

)
− ∂uH · ∂u [N1 + N2] symmetric

=⇒∂uH · ∂u [M1 + M2 + N1 + N2] symmetric

2.3 Application to the Baer-Nunziato system

In the Baer-Nunziato model (Equation (1)), by expressing the entropic variables as v =
(Vα,v2,v1)t and ak and bk (line vectors) as ak = (aαk ,a

2
k,a

1
k), bk =

(
bαk , b

2
k, b

1
k

)
, the

Equation (10) reads:

0 = aα1 + bα1
vt2 · ∂u2f(u2) = a2

1 + b2
1

vt1 · ∂u1f(u1) = a1
1 + b1

1

VαuI + v2 · g2 + v1 · g1 = aα2 + bα2
0 = a2

2 + b2
2

0 = a1
2 + b1

2

(14)

with the conditions ∂u (a1 + a2) symmetric and b1 +b2 = 0. The classic mixture entropy
proposed for this model is defined as H = −

∑
k=1,2 αkρksk, with sk the phase entropy,

and there exists an associated entropy flux G defined by G = −
∑

k=1,2 αkρkskuk. The
generalized entropic variables v are v = (vα,v

t
2,v

t
1)t with Vα = p1/T1−p2/T2, vk = ((gk−

1/2u2
k)/Tk, uk/Tk, -1/Tk)

t, k = 1, 2 and gk is the Gibbs free energy, gk = εk +pk/ρk−Tksk.
Interestingly, two compatible choices for the decomposition of the Jacobian of the entropic
flux ∂uG appear:

a1 =

 Y
vt2 · ∂u2f(u2)
vt1 · ∂u1f(u1)

b1 =

-Y
0
0

a2 =

Z0
0

b2 =

-Z + vαuI
∑

k=1, 2

vk · gk

0
0

 (15)

with either (Y, Z) = (Γ, 0) or (Y, Z) = (0,Γ) where Γ = p1u1/T1−p2u2/T2. Corresponding
decomposition of f and G is not unique. For κ = p1u1/T1−p2u2/T2

p1/T1−p2/T2 , possible choices are

M1 =

X 0 0
0 ∂u2f(u2) 0
0 0 ∂u1f(u1)

N1 =

-X 0 0
0 0 0
0 0 0

M2 =

 0 0 0
j2 0 0
j1 0 0

N2 =

 uI 0 0
g2 − j2 0 0
g1 − j1 0 0

 (16)
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with either (X, jk) = (κ,0) or (X, jk) = (0,χk) respectively to Equation (15) where
χk = (0, (-1)kpk, 0)t or χk = (0, 0, (-1)kpkuk)

t. It is important to notice that Theo-
rem 2 and 4 depend only on a and b or equivalently on the sum of the matrix M1,
N1, M2, N2. Hence, for each decomposition above, the condition on (b1 + b2) writes:∑

k=1,2
1
Tk

(pk − pI) (uI − uk) ∂xαk = 0. A unique solution on pI satisfies this condition

and is pI = µp1 +(1−µ)p2, with µ (β) = [(1−β)T2]/[βT1 +(1−β)T2]. Simple calculations
show that ∂u (a1 + a2) is indeed symmetric in each case. However, first ∂uuH = ∂uv

t is
not invertible since det (∂uuH) = 0. H is indeed not strictly convex. Second, the sym-
metry conditions of Theorem 4 are not verified. Therefore it is not possible to derive a
symmetrized form in the sens of Mock-Godunov of the system with the classic mixture
entropy. The underlying reason leading to a non strictly convex mixture entropy is the
assumed thermodynamic of the mixture. Indeed, defining H the classic way means a
mixture acts as if each phase does not see one another, there is no interaction on their
thermodynamic which is defined by a two-parameters equation of state sk = sk(ρk, εk). In
[1], the phase entropy sk is found to depend also on the volume fraction αk accounting for
the compaction of the granular bed. In [9] a mathematical mixture entropy H is given as
H = −

∑
k=1,2 αkρk [ln (sk(ρk, pk)) + ψk (αk)] without justifying its definition and without

using it. We are currently investigating a new consistent mixture thermodynamic which
raises a strictly convex mixture entropy and could then lead to a symmetrized form of the
7eq. model .

3 Numerical methods

The models used hereafter to simulate the jet atomization have been implemented in
the CEDRE software which is a multi-physics platform working on general unstructured
meshes and organized as a set of solver [8]. Two solvers are used, SEQUOIA for the
diffuse interface model and SPIREE for the KBMM. Since the work on the extended
thermodynamic of a mixture is not yet completely validated, the present diffuse interface
model applied in the separated-phase and mixed regions is the classical euler 7eq. model
defined in Equation (1). As our primary concern is to increase the disequilibrium in the
interface diffuse model, for sake of simplicity, a simple KBMM element has been chosen for
the dispersed phase region: a multi-fluid modelling with sampling methods [15] along with
a monokitenic and monothermal assumption of the droplet size distribution. Evaporation
and coalescence of the droplets are neglected, thus only one sample of droplet is needed
to attest the success of the coupling strategy of the two models. The two models are
two-way coupled through the source terms Sq→u and Su→q which model the atomization
of the liquid phase into droplets and the pseudo-coalescence of the droplets into the liquid
phase but also through Sdrag the drag force of the gas acting upon the droplets and Sh the
conducto-convective heat transfer at the surface of the droplet. A Lie splitting technique
is used resulting in the following system:

Un+1 =
[
Su→q-Sh-Sdrag

Ru

εu

]∆t Rp

εp
Hu (Un) Qn+1 = [Sq→uShSdrag]

∆t Hq (Un) (17)

7
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The hyperbolic operators Hu and Hq, of the two-fluid model and the dispersed model re-
spectively, are calculated using an approximate Riemann solver, HLLC, and an Presureless
Gas Dynamics exact Riemann solver respectively. Then relaxation operators and source
terms are applied in the order showed in System (17) to define the new states Un+1 and
Qn+1 of the conservative variables. For the 7eq. model , to ensure good robustness of the
scheme, a MUSCL-Hancock strategy with a multi-slope MUSCL spatial reconstruction
scheme has been applied [7]. Strong assumptions are made to tackle certain issues by as-
suming (1) the interfacial terms pI and uI to be local constants in the Riemann problem,
(2) the volume fraction to vary only across the interfacial contact discontinuity uI . As a
result, the non conservative terms in System (1) vanish, uI and pI are determined locally
by Discrete Equation Method (DEM) [19] at each time step and stay constant during the
update. Thus, phases are now decoupled and the system (1) splits into two conservative
sub-systems to which a classic HLLC solver is implemented. Finally, a hybrid limiter has
been used to combines the advantages of a CFL-Superbee limiter for high gradient regions
and a third order CFL dependent limiter for the regular regions [16].

3.1 Relaxation procedure

In many applications, the pressures of a two-phase flow are assumed to relax instan-
taneously. Thus, after the hyperbolic update, the following ODE is solved: ∂tU =
Rp(U)/εp, with εp → ∞ which infers uk remain constant. Manipulating the equations,
an equilibrium pressure is obtained by solving a second order equation with an itera-
tive procedure such as a Newton method [7]. As for the velocities, within the context
of jet atomization in subcritical conditions, the relaxation time is in theory finite. The
following ODE is solved: ∂tU = Ru (U) /εu which implies αk, ρk are conserved during
the relaxation. Subtraction of the momentum equations gives the following ODE on the
split velocity ud = u2 − u1: ∂tud − Aoud/εu = 0. A first numerical approach is to fix
a remaining slip velocity ratio target at each time step ∆t. It defines the characteristic
relaxing time εu/A

o = ln(X)∆t with X = u∆t
d /u

o
d and Ao = (αo1ρ

o
1 +αo2ρ

o
2)/(αo1ρ

o
1α

o
2ρ
o
2). An

instantaneous velocity relaxation is in pratice also possible and leads to a unique relaxed
velocity which is the mass weighted average of the two velocities before relaxing.

3.2 Coupling source terms

The physical processes accounted for in the coupling source terms are the atomiza-
tion of the liquid phase, Satom, and the pseudo-coalescence of the liquid droplets, Scoal.
They are defined as follows: Satom=α2ρ2fatomλatom and Scoal=αdρdfcoalλcoal where fatom
is the atomization frequency, λatom describes the efficiency of the atomization, fcoal the
pseudo-coalescence frequency and λcoal the pseudo-coalescence efficiency, defined all in
[16]. Thanks to the increase of disequilibrium by using the 7eq. model with finite velocity
relaxation, Satom has been revisited making full use of the existence of two velocities to
track regions with high shear stress and thus regions where atomization should occur.

8
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4 Results and Discussion

From the hierarchy of diffuse interface model have been retained the instantaneously
relaxed 7eq. model (IR7eq) and the non-instantaneously relaxed 7eq. model (NIR7eq) to
perform numerical simulations. Their prime purpose is to validate the numerical method
robustness when allowing velocity disequilibrium and model coupling. The impact on the
liquid core length, its dynamics, the sharpness of the interface and the velocities at the
interface is then evaluated. The operation conditions being so close to a real configuration,
the results may also be predictive.

4.1 Description of the configuration

The configuration choice meets several criteria mimicking the experimental test-bench
MASCOTTE, a cryogenic rocket engine combustion chamber. Adopting a unique co-
axial injector of liquid oxygen O2 (l) circumscribed by gaseous hydrogen H2 (g), it offers a
portion θ ∈ [0, π/3] of a cylindrical chamber to capture the dynamic of the jet. As a result,
the computational time is thus not too heavy to conduct numerical tests and validations
but the liquid jet will not flap. Mesh refinement has been applied in the region of the

Figure 1: Geometry and mesh of the configuration (around a million cells)

injector to capture the interface dynamics (see Figure 1). The injector lip of length Llip

is meshed by four cells at the minimum mesh size ∆xmin. Walls are set to adiabatic slip
boundaries, the variables (ρk, uk, Tk, αk) define the inlets, the outlet is pressure defined at
p∞ = 10 bar. The momentum ratio J = ρ1u

2
1/(ρ2u

2
2) ∼ 3, temperature ratio T1/T2 ∼ 3

and the residual phase volume fraction εα = 1e-6. The numerical simulation has been
conducted as followed: first, the oxygen and the hydrogen have been injected with a ramp-
up to reach at τ = τ0 the operating point using the five-equation model with no coupling.
Then, the simulation has run approximately ten times the characteristic convective time
of the liquid core τconv. At this point designated by τ1 has started the comparison of the
models.

4.2 Comparison of the models

For the first time, we have successfully conducted a simulation of jet atomization with
an atomized NIR7eq. The simulation has run for 2.5τconv attesting the success of the
implementation. Figure 2 presents the volume fraction of liquid droplets αd and the norm

9
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Figure 2: atomized NIR7eq (Legend: blue isovolume of α2 = 0.99, slip velocity norm
|uslip|, volume fraction of droplets in the SPIREE solver αd)

αd low high

|uslip| low high

of the slip velocity in the two-phase flow |uslip|.The slip velocity is highly concentrated in
the interface region, on the so-to-say ”gaseous side”, where atomization occurs. It permits
to give to the atomized liquid droplets the speed of the liquid phase. It is a major gain of
accuracy as long as the characteristic time of velocity relaxation is physically well-defined.
At the present time, the characteristic time is finite and constant, but it will be reviewed
in future works to match the physical reality. Then, Figure 3 shows qualitatively the
liquid interface after 1.5τconv simulation time and compare it to the IR7eq. The latter
is not coupled with atomization since Satom needs a non zero slip velocity. Interestingly,

Figure 3: Comparison of the liquid volume fraction α2: slice at θ=π/6, at T=T1 (left)
and T=T1+1.5τconv (right), α2=1.0 α2=0.01

atomized NIR7eq

IR7eq

atomized NIR7eq

IR7eq

the liquid core is very similar for the two models meaning the atomization process is not
interfering with the liquid core. Moreover a quantification of the liquid core length and the
interface diffusion for the two models is proposed hereafter. The length of the liquid core
Llc varies over time witnessing the pulsation of the jet. The two models behave similarly
and show the same time averaged length (Figure 4a). Figure 4b quantifies the interface
diffusion close to the injection which overlaps from 5 to 9 mesh cells. Distinction must
be made between numerical diffusion and physical diffusion. The numerical diffusion of a
discontinuity is proportional to the square root of its travelled distance whereas physical
diffusion may be due to folding of the interface which cannot be captured by the mesh.
Figure 4b seems to capture numerical diffusion mainly. Applied further down the liquid
core, this analysis could help us to detect where a sub-grid model would be needed to
capture correctly physical processes such as ligaments detaching or interface folding.

5 Conclusion

This paper has presented first an extension of the symmetrization theory of Mock-Godunov
for non-conservative systems. It has permitted to reinterpret the classic Baer Nunziato
model but has shown the limit of the classic mixture thermodynamic. Then, for the first
time, numerical simulation in quasi real configuration has been conducted with a NIR7eq
model coupled to a simple KBMM element. The numerical implementation has shown
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Figure 4: Comparison of the liquid core length Llc over time at isovalue α2 = 0.95± 0.04
and of the interface diffusion λLC defined by α2 ∈ [0.1, 0.9]
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to be robust enough to cope with the strong gradients in velocity and temperature. At-
omization has been successfully implemented and fed with the liquid velocity. Results
have shown that atomization and velocity disequilibrium do not interfere with the liquid
core dynamics and its shape. Future works include the extension of the mixture ther-
modynamic and the symmetrization of the 7eq. model , a physical dynamic definition of
the velocity characteristic relaxation time. This study has been co-funded by the French
Aerospace Lab ONERA and the French Space Agency CNES.
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