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Abstract. The formulation of a new all-speed compressible CFD (Computational Fluid Dynamics) 

scheme, which unifies a compressible CFD schemes of implicit MUSCL (Monotonic Upstream-

Centered Scheme for Conservation Laws) and an incompressible CFD scheme of SMAC (Simplified 

Marker and Cell) methods, SMUC (SMAC-inspired Mach Uniform Compressible scheme), is 

presented. New scheme has no Mach dependent adjustable parameter such as a cut-off Mach number. 

Numerical examples show improvements by this scheme, such as several times speed up to the 

convergence in low Mach number range. It is also shown that the procedure of SMAC method is 

theoretically derived from the operator factorization of minimum errors. 

 

NOMENCLATURES 

 c  : Sound speed 

C  : Reference sound speed 

 e  : Total energy per unit volume 

 ie  : Internal energy per unit volume 

 Ê  : Outward normal inviscid flux at cell boundary 

 E
~

 : Outward normal numerical inviscid flux at cell boundary 

h  : Enthalpy 
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m  : Mass flux 

M  : Mach number 

Mc : Cut-off Mach number 

n  : Outward normal vector at cell boundary (xn，yn，zn) 

R̂  : Viscous flux at cell boundary 

R
~

 : Numerical viscous flux at cell boundary 

p  : Pressure 

p~  : Numerical pressure at cell boundary 

Q  : Vector of Conservative variables Tewvu ,,,,   

q : Vector of Conservative variables , , , ,
T

p u v w s   

s  : Entropy 

S  : Area 

t  : Time 

u  : Velocity vector Twvu ,,  

U  : Reference advection speed 

nV  : Outward normal velocity at cell boundary  

zyx ,,  : Cartesian coordinates 

  : Cell volume 

  : Density 

  : Molecular viscosity coefficient 

T  : Eddy viscosity coefficient 

Lower superscript 

i  : Cell index 

ji,  : The 'j' th cell boundary or neighboring cell of cell 'i' 

L  : Left side of cell boundary 

R  : Right side of cell boundary 

 

1 INTRODUCTION 

 All real fluids are compressible, but the influence of compressibility differs depending on M (Mach number). 

Q
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In principle, the compressible NS (Navier-Stokes) equation is a governing equation of fluids for all M, but 

incompressible NS equations are often used at low M flows of approximately M <0.2. In CFD, the basic 

schemes are different between them, and this has made their different progresses historically [1]-[6]. 

In the flow field above subsonic speed, it is essential to use compressible CFD. Also, even for low M flow, 

compressibility needs to be considered when directly handling sound waves. For example, in the rocket engine 

combustor flow, a wide range of M change appears as a series of phenomena, from low M flow of liquid 

fuel/oxidizer to supersonic flow after nozzle. Furthermore, a simultaneous analysis of flow and sound waves is 

necessary for phenomena such as combustion oscillation in which sound affects flow fields. Therefore, it is 

necessary to deal with a broad spectrum of M flows and to solve flows and sound waves simultaneously. 

The compressible CFD schemes that can simulate flows and sounds simultaneously can be roughly divided 

into density-based and pressure-based ones. In the former, the conservation law is solved using conservative 

variables, which are density, momentum and total energy; and then, pressure is obtained from the equation of 

state from density and internal energy. 

In this category of computational algorithms, various schemes combining MUSCL [4] (Monotone Upwind 

Scheme for Conservation Laws)-FVM (Finite Volume Method), Riemann flux and δ-form implicit scheme for 

time integration, are widely used in the aerospace field. 

These schemes are flexible to cell (grid) geometry and applicable both to structured and unstructured grids. 

In addition, a δ-form implicit scheme permits various combinations of its L.H.S. (numerical) and R.H.S 

(physical). For example, high spatial accuracy and high computational efficiency are achieved using a higher-

order scheme on R.H.S. and a first-order scheme in L.H.S. 

The Riemann flux used in MUSCL is the key to realize robustness and clear discontinuity capturing without 

adjustment of numerical dissipation, and the AUSM (Adjustment Upstream Splitting Method)[6] family 

schemes have been developed to achieve this without complexity. 

However, in low M regions, the following problems are reported. 

(a) Stiffness due to a large ratio of sound speed and advection speed 

(b) Excessive numerical dissipation at low M included in numerical scheme 

(c) Round-off errors due to extremely small fluctuation such as pressure and density 

Among them, (c) can be cured by using fluctuations as variables, thus, the essential problems are (a) and (b). 

In response to these problems, time-derivative pre-conditioning methods [7][8], and their corresponding implicit 
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schemes [9], and all-speed Riemann fluxes that control numerical dissipation appropriately for low M, have 

been developed. By using these schemes, now it is possible to compute all M flows[10][11]. However, as M 

decreases, the dissipation against pressure becomes stronger, which hinders the acoustic wave computations 

expected for compressive CFD schemes. Furthermore, there are still issues for adjustment of problem- 

dependent Mc (cutoff M) which is necessary for these schemes. 

On the other hand, the pressure-based schemes are based on incompressible CFD scheme inherited from 

MAC (Marker and Cell) method [1]. In incompressible fluids, pressure cannot be calculated from the equations 

of state, thus, in incompressible CFD, the elliptic equation derived from the equation of momentum and the 

incompressible condition are solved to obtain pressure. Through this procedure, an efficient method that solves 

issue (a) has been realized, and it is widely used including various higher order accuracy schemes [12, 13]. 

An extension of the pressure-based scheme to compressible flows [14]-[17] uses conservative variables, 

combines a density equation and a momentum equation, and approximates an equation of state to derive 

implicit pressure equations, similarly to the MAC method. The equation of total energy is added, but the 

equations of density and momentum are not much different from those of incompressible ones. Computational 

efficiency at M <0.1 which depends on details of numerical dissipation, and accuracy of simultaneous analysis 

of fluids and sound waves are not clear. However, in Ref. [14], adjustable parameters similar to Mc were 

reported necessary for improvement of calculation efficiency at low M. Therefore, there appears to be a 

problematic like that of the density-based schemes. 

On the other hand, Ref. [18] solves time evolution equations of velocity-pressure rather than conservation law. 

By taking advantage of the fact that the density fluctuation is small in low M flows and sound propagation, the 

density and energy equations are omitted and simultaneous analysis at low M is realized by a scheme similar 

to SMAC (Simplified MAC) [2]. Although its extension to general compressible fluids involving density 

fluctuations is not trivial, the use of the time evolution equation to pressure leads to a simpler formulation which 

can be extended to M=0 without adjustable parameter.  

A comprehensive comparison is difficult because each characteristic is different for each individual scheme. 

However, it can be said that a density-based scheme using Riemann flux is more suitable to non-oscillatory and 

sharp capturing of discontinuities including shock waves, whereas pressure-based schemes are more efficient 

for low Mach number flow computations as their incompressible versions.  

Therefore, the combination of the advantages of both seems promising, although the following differences 
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are concerns; 

・ Operator splitting: In a pressure-based scheme, each variable and each term are separated by operator 

splitting or fractional step, and each variable is updated in stages; whereas in the density-based schemes, 

the conservative variable vector is updated at once. The Riemann flux, playing a key role in density-based 

schemes, computes the fluxes of all the components at once, which makes it difficult to directly conduct 

the operator splitting. 

・ Calculation of pressure: Pressure is calculated by equation of state in density-based ones, and the elliptic 

equation in pressure-based ones. The latter corresponds to the implicit scheme of pressure [17], but its 

relationship with the former is unclear. 

Therefore, the motivation and purpose of this research are the following two. 

(1) Integrate the density-based and pressure-based compressible CFD schemes, in which their mutual 

relationships are not clear, in the framework of the density-based scheme and δ-form implicit scheme. 

(2) By utilizing the features of the SMAC method, we propose a new scheme SMUC (SMAC-inspired Mach 

Uniform Compressible scheme) that enables simultaneous analysis of arbitrary low M flow and sound waves 

without adjusting Mc. 

As the existing density-based schemes, SMUC consists of the MUSCL-FVM using δ-form implicit scheme 

and an all-speed Riemann flux. 

First, we will introduce an SMAC like implicit time integration method named GC-SMAC (Generalized 

Compressible SMAC) using δ-form implicit scheme, using transformation to entropy variable and approximate 

factorization. In its derivation, it will also be shown that the procedure of SMAC is derived from an optimal 

factorization. Next, as an improved Riemann flux, we will propose a new Riemann flux: UD (Uniform 

Damping)-SLAU (Simple Low-dissipation AUSM) that can prevent unnecessary oscillations while 

maintaining the acoustic computation capability. The similarity in numerical dissipations included in GC-

SMAC and UD-SLAU will also be explained. In addition, some numerical examples will demonstrate their 

effectiveness. Finally, a summary and future works will be given. 

 

2 BASIC EQUATIONS AND IMPLICIT SOLVERS IN ENTROPY VARIABLES 

Time derivative pre-conditioning method [7][8] that extends compressible CFD to low Mach numbers has 

realized a neat formulation by using entropy variables (velocity, pressure, entropy). Since the entropy is an only 
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thermodynamic variable that does not fluctuate by compression, the later formulation will become simple. Let 

us start from the compressible NS equation using entropy variables. 

 

1
0t up


     u u u R

  (1) 

 2 0t pp p c R     u u   (2) 

 0 pt Rss u  (3) 

   (4) 

 τR 

1

u  (5) 

  



















 quτ




1

i
p e

p
R  (6) 

τ and q are the viscous tensor and the heat flux vector, respectively. The viscous term is handled as usual, and 

the details are omitted. Also, Eqs. (2)(3) are unchanged even when using the fluctuations from the reference 

values are used instead of the absolute values, and then they are free from the adverse effects of rounding errors 

at low Mach numbers. (Additional measures are necessary on the R.H.S., though) 

The key to efficient computations of compressible CFD schemes at low M is the implicit time integration 

scheme that allows a large Courant number. Leaving the spatially differential form and introducing temporally 

implicit finite difference, the semi discrete form is derived as; 

  0
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When θ = 1, it is second order temporal accurate, and θ = 0 gives the first order accuracy. Newton iteration 

is introduced to solve the nonlinear equation for un + 1 etc. Setting Newton iteration count as k, and omitting the 

superscript k of the coefficients for brevity, and rewriting δt ' simply as δt; 

 *1
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








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










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 uuu  kk 1   (15) 

 ppp kk 1   (16) 

 sss kk 1  (17) 

Here, the left side viscous term is simplified considering utilization of diagonal approximation. Also, the 

R.H.S. is defined as follows. 
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*   (20) 

The R.H.S. is obtained by variable conversion from discretization with an arbitrary set of variables. Specific 

examples will be described in Section 5. If Newton iteration converges, the R.H.S. = 0 is established, which 

means that the implicit scheme of the Eqs. (7)-(9) holds. In practice, set an appropriate threshold for 

convergence is prescribed, or the number of iterations is specified.  

 

3 2 STEPS METHOD DERIVED FROM OPTIMUL OPERATOR SPLITTING 

Vector notation is introduced and differential operators are grouped as follows. 
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 (26) 

Using these notations, we rewrite Eqs. (12)-(14) as follows. 

   *
p p p u u p u u s st         I A A A A A q q   (27) 

For an example, the R.H.S. can be approximately factorized as follows; 

      *
u u s s u p p p p ut t             I A A I A A A q q  (28) 

Errors are produced by approximate factorization in general. For example, the Eq. (28) includes the following 

factorization error. 

  
     
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 (29) 

Here the following relation was used; 

 
0

0a b c d
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 
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A A  (30) 

Therefore, the entropy term produces no factorization error in any factorization. Thus, the entropy term will be 

omitted in the following discussion for brevity.  

For factorization error evaluation, dimensional analysis of each differential operators is performed. Consider 

high Re number flow and neglect the influence of viscosity term. 
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 
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Here, C and U are Reference scales of sound speed and advection speed, and the following relationship is 

used for the pressure fluctuation. 

    2UOppO    (35) 

Eq. (31)(32) are for pressure equation, and Eq. (33)(34) are for velocity equation, thus, these dimensions 

are different. At low M (C>>U), i.e., only Eq. (32) is significantly large. Therefore, at low M, it is necessary 

to ensure that pAu does not remain in the error. There is only one factorization into three or more terms satisfying 

this condition; 

     *
u u u p p u p pt t t             I A I A A I A q q  (36) 

A Factorization into 2 terms can be obtained by combining the 1st and 2nd, or 2nd and 3rd terms of Eq. (36). 

Eq. (28) is obtained by a combination of 2nd and 3rd terms. Another possibility is to combine the 1st and 2nd; 

   *
u u u p p u p pt t            I A A A I A q q  (37) 

Considering the actual numerical schemes, to solve the first step of Eq. (37) is as difficult as to solve the original 

Eq. (27). Therefore, it is not attractive as a numerical scheme and Eq. (28) is only feasible factorization into 

2 terms. On the other hand, it is feasible to solve the Eq. (36), however, more factorizations make more 

factorization error. (The fact that matrix of pressure becomes symmetric can be beneficial, though.)  

As a result, Eqs. (12)-(14) are solved, by using approximate factorization of the differential operators 

expressed by Eq. (28) in two steps including the entropy variable. 

First step (advection): 
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Second step (pressure): 
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Substituting Eq. (41) into Eq. (42), we have; 
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The left side density difference is approximated to obtain the following equation; 

 **2**22 uu  
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




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
 ctppctp

p

R
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The calculation procedure is summarized as follows:  

i) calculate the R.H.S.; ii) convert it to an entropy variable; iii) solve Eq. (45) with δp as an only unknown 

variable after step 1 (Eqs. (38)-(40)); iv) solve Eq. (41) to obtain the final velocity variation; v) When the 

variation of the entropy variable vector is obtained, convert it again to a conservative variable and proceed to 

the next time step. (See Section 5) 

If c → ∞ and the discretization schemes of the L.H.S. and the R.H.S. are the same, this method is reduced to 

almost the same scheme as SMAC method [2] of incompressible CFD. Therefore, it can be regarded as 

generalization of SMAC method including the original one as a special example (See APPENDIX A.). 

Similarly, if the Newton iteration is limited to twice with first order temporal accuracy (θ=0), it is 

mathematically equivalent to the incompressible version of PISO (Pressure-Implicit with Splitting of 

Operators) [17] in a semi-discrete form, however, it does not match with the fully discretized form shown in the 

latter sections. In general, the pressure-based compressible CFD scheme can be regarded as a generalization of 

the incompressible MAC type CFD scheme, but the scheme directly using the conservation law[14]-[17] does not 

asymptotically approach to SMAC even if c → ∞. (Since SMAC is not necessarily the best incompressible 

CFD scheme, this does not mean which scheme is better or worse.) In this scheme, on the other hand, simplicity 

of SMAC method is maintained in terms of velocity-pressure by constructing a δ-form implicit scheme 

employing entropy variables. This scheme is named GC-SMAC (Generalized Compressible SMAC). 

In addition, the derivation of this scheme as an optimal approximate factorization shows the necessity of 
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SMAC calculation procedure. In other words, the reverse procedure of "advection step" after "pressure step" 

could have been an alternative scheme; but it is inappropriate since this causes a huge factorization error. 

  

4 NUMERICAL METHOD FOR THE SECOND STEP 

In the discretization of the L.H.S., the first step includes only advection and diffusion, and it is easy to make 

implicit schemes that maintains diagonal dominance by using the first order upwind scheme. (See Eq.(60)(61)) 

On the other hand, the second step is not that simple. It can be shown difference among many implicit schemes 

for compressible CFD including time derivative pre-conditioning methods are explained by differences for 

solving the second step. (See APPENDIX B.) 

Regarding the second step, in the inviscid case, if the finite volume method is used, as a discretization method 

applicable to both structural and unstructured meshes, to Eq. (45), it can be written as follows; 

 ...,,,

22

,,, SHRdSp
tc

dSp
t

p
j

jijiji
j

jijijiii 







  nnu   (46) 

Then, the relationship and definition of the following equation are used. 
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The advection of pressure is calculated by first order upwind difference to maintain the diagonal dominance 

and the difference at the cell boundary is defined as follows. 

 j

jnijni

i

jnijni

jiiji p
VV

p
VV

p 
22

,,,,

,,





nu  (49) 

  
ji

ij
ji h

pp
p

,
, 





 n  (50) 

where Δhi, j is the projection of the distance between the cell centers to the cell-interfacial normal vector 

[corresponding to cell-to-cell distance in an orthogonal (Cartesian) mesh]. Using these, Eq. (46) can be written 

as follows.  

 
, , , 2

,
,

. . .
2 2
ni j ni j ni j i j

i i j i j
j i j

V V V p pt
p p p c t ds R H S

V h

 
  

  
     

  
  (51) 

Here, the following relationship was used. 

 0,, 
j

jijni dSV  (52) 
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Equation (50) can be rewritten as follows. 

 ...
22 ,

,,, SHRdSp
V

p
t

p
j

jij
jijni

i
ji

i 










 





  








 (53) 

 cCnlV jijniji ,,, 2  (54) 

 
ji

ji h

tc
Cnl

,
, 


  (55) 

Here, Cnl corresponds to the local Courant number based on the sound speed. In order to discretize the R.H.S. 

for pressure, numerical dissipation inherent in the R.H.S. should be included, and then σ is corrected as follows 

including the simple handling of viscosity. 

  1,2max ,,, jijniji CnlcdV    (56) 

 
ii

jiT dS
d









,)(2

 (57) 

The following terms necessary for the evaluation of the Eqs. (41)(42) are given in a central difference 

manner as follows. 

  



j

jijij dS ,,
****

2

1
nuu    (58) 

 


j
jijij dSpp ,,2

1
n  (59) 

In addition, the advection terms in the first step (Eqs.(38)(39)) are discretize similarly as follows; 

 
, , ,

, . . .
2 2

ni j ni j ni j

i i j i j
j

V d V V dt
ds R H S

V
   

   
   

  
u u u  (60) 

 
, , ,

, . . .
2 2

ni j ni j ni j

i i j i j
j

V d V V dt
s s s ds R H S

V
   

   
   

  
  (61) 

 

5 EVALUATION OF THE R.H.S. BY MUSCL-FVM 

As GC-SMAC is written in δ-form, various discretization with different stability and accuracy can be used 

on the R.H.S.  Here, we show an example of MUSCL for conservative variables. 

Compressible NS equation can be written in integral form as; 

 0)ˆˆ(   dSdt REQ  (62) 

In this paper we focus on the evaluation of the inviscid flux. The inviscid flux can be written as; 

 ΝΦE pm  ˆ  (63) 
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 nVm   (64) 

  Thwvu ,,,1   (65) 

  Tnnn zyx 0,,,0   (66) 

 /)( peh   (67) 

By applying this to the computational cell of polyhedron (polygon in two dimensions), the basic equation of 

the finite volume method common to the structured/unstructured mesh can be obtained. 

 0)
~~

(
1

,,, 


 
j

jijiji
i

t dSREQ  (68) 

Eq. (68) is exact if the flux is an accurate average. MUSCL realizes the higher-order accuracy by inner-cell 

reconstruction and generally calculates inviscid flux using Riemann flux from right and left physical quantities 

of cell boundary (including discontinuity). The R.H.S. of the entropy variable, Eqs. (18)-(20), is obtained from 

the above-mentioned discretization and variable transformation in which the entropy variable vector is defined 

as s, as follows. If Newton iteration converges, R.H.S. = 0 is valid. 

 















 

j
jijiji

i

nn dSt ,,,
1

21
* )

~~
(

1
REQQQ

Q

s
s   (69) 

When compared with an implicit scheme with the direct use of conservative variables, variable transformation 

and inverse transformation are required before and after the calculation of L.H.S., but this is only a small part 

of the whole implicit method computation. Since the calculation of L.H.S. is simpler in this case than that for 

conservative variables, the total computational amount rather decreases even if the conversion to entropy 

variable vector is combined[9]. 

 

6 SLAU TYPE NUMERICAL FLUX SCHEME 

 A Riemann flux is based on SLAU [10] which is a simple and robust AUSM [6] family, having less dissipation 

at low M. The Riemann flux of the AUSM family schemes can be written in the following form. 

 ΝΦΦE p
mmmm

RLFamilyAUSM
~

22
~ 








 (70) 

Transport due to mass flux is separated from pressure, and it is upwinded by its sign. Various AUSM family 

fluxes are defined by differences in mass flux and interfacial pressure. In SLAU, it is defined as follows. 

(Countermeasures against strong asymmetric expansion are omitted.) 
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    p
c

f
VVm p

nnSLAU diffdiff)ave(    (71) 

           pppp RLRLSLAU ave11 diffave~     (72) 

here, 

    LR qqq 
2

1
ave  (73) 

    LR qqq 
2

1
diff  (74) 

  cc ave  (75) 

 nu nV  (76) 

 cVM n /  (77) 

     /aveave nn VV   (78) 
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otherwise,     ))(1(
2

1
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4
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/
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/
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RLRLRL

RL

Msign

MMM
  (79) 

χ is defined as follows, χ = 1→0 when M = 0→1, and controls numerical dissipation at subsonic speeds. 

 





 )ave(

1
,0.1min

2
u

c
M


 (80) 

 2)1( M


  (81) 

 

7 IMPROVEMENT OF SLAU FOR DAMPING OF PRESSURE NOISE 

The problem in case of M << 1 is how to define the dimensionless coefficient fp of the pressure difference 

term in the mass flux. In the original SLAU, it is defined as follows, and for low M, fp ≈1. 

 pf  (82) 

The pressure difference term in the mass flux acts as numerical dissipation for pressure through density 

variation suppression. Considering the case of one-dimensional, spatially first order accuracy with zero fluid 

velocity, as an example. Density variation according to the mass flux difference is written as; 

   xx
p

iii
p

t p
c

xf
ppp

xc

f

2
2

2 11





   (83) 

Furthermore, assuming isentropy; 

 xx
p

tt p
xfc

cp
2

2 
   (84) 



Eiji Shima and Keiichi Kitamura 

15 
 

This is the diffusion equation of pressure, and it can be seen that fp controls the diffusion amount of pressure. 

Eq. (84) has the following analytical solution. Here, Td is the damping characteristic time. 

 )exp(0 ikx
T

t
pp

d

  (85) 

 
2

2

kxfc
T

p
d 
  (86) 

Substituting the relation of sound waves with T as the period and L as the wavelength; 

 T
x

L

f
T

p
d 


22

1


 (87) 

This means that if fp is a constant, the damping characteristic time depends on the grid size: The damping is 

fast (strong) in the coarse grid, and it is slow (weak) in the fine part even for unnecessary disturbances. 

Therefore, we introduce the following form of fp using the control variable Tc of the time dimension, in which 

the damping characteristic time is independent of the grid size. 

 
x

cT
f c

p 
  (88) 

When this is used, the damping characteristic time can be expressed as follows. 

 T
T

T

kTckxfc
T

ccp
d 2222 2

122





  (89) 

Therefore, the damping characteristic time is sufficiently longer than the period, irrespective of the grid size, 

if Tc << T. 

Therefore, if Tc is sufficiently smaller than the period of sound waves, the damping characteristic time 

becomes sufficiently longer than the period, and the sound wave can be calculated without strong damping. 

Conversely, when the period is order of Tc or less, the damping increases irrespective of the grid size, and the 

effect of noise suppression is expected. Also, no matter how small the Tc is, we cannot calculate the waves of 

the grid size or less, and hence, considering the smooth connection from the original SLAU, we will use the 

following. 

 










x

Tc
f c

p ,1max  (90) 

Since the damping of sound waves becomes uniform irrespective of the grid size, we call this numerical flux 

scheme UD (Uniform Damping)-SLAU.  

It is obvious that sound waves with a period shorter than the time step of the unsteady computation cannot 

be resolved, and thus, it is desirable that such sound waves be damped since they can only be noises. Therefore, 
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in the case of unsteady computation, we define the following as the default value of Tc; 

 tTc    (91) 

As is clear from the expression Eq. (90), this selection also means recovering the original SLAU when the 

Courant number based on the speed of sound is 1 or less, and this is natural in terms of smooth transition with 

the high-speed side scheme. Note that numerical experiments have shown that variable Tc led to numerical 

oscillations, therefore, Tc needs to be fixed even when allowing the variation of Δt. 

 

8 COMBINATION OF UD-SLAU WITH IMPLICIT TIME INTEGRATION METHOD 

In UD-SLAU, the numerical dissipation in the R.H.S. will be strengthened. Therefore, the spectral radius in 

L.H.S should be also augmented. For example, the spectral radius used in LU-SGS[5] implicit scheme etc. 

should be modified as follows; 

 max 1, ccT
V c d V c d

x 
       

 (92) 

On the other hand, in the case of GC-SMAC, it can be seen, from the comparison with Eqs. (56),(57), 

stability is guaranteed by defining as follows; 

 , , ,max ,2 ,1c
i j ni j i j

cT
V d c Cnl

x       
 (93) 

From the comparison of Eqs. (54)(55) and (90), if the following holds, the GC - SMAC is stable without 

any change.  

 tTc  2  (94) 

As a result, if the definition of Eq. (91) is applied, the spectral radius used in GC-SMAC is simply denoted 

as; 

  , , ,max 2 ,1i j ni j i jV d c Cnl     (95) 

Therefore, the compatibility of UD-SLAU with GC-SMAC is excellent. 

 

9 NUMERICAL EXAMPLES 

9.1 Inviscid flow around two-dimensional airfoil (NACA0012) 

 As an example of convergence acceleration to steady solutions, we show convergence in an inviscid flow 

around NACA0012 airfoil. An O-type mesh is used and the time step is set so that the maximum Courant 

number based on the advection speed becomes about 1. The temporal accuracy is the first-order, in which 
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Newton iteration is limited to once, without the local time method. 

 Figures 1-3 show the convergence history of the velocity field at M = 0.5, 0.1, 0.01 by schemes combining 

SLAU& MFGS [10] (without time derivative pre-conditioning), SLAU&TC-PGS1[9], which is an implicit 

scheme having flavor of the time derivative pre-conditioning method and the fastest in our previous study[9], 

SLAU&GC-SMAC and UD-SLAU&GC-SMAC (SMUC). In each case the number of time steps is fixed at 

10000, and the horizontal axis shows CPU time. Here MFGS is similar to LU-SGS with more inner iteration 

where LU-SGS[5] has only one symmetric sweep. 

 At M = 0.5, the convergence history and the computational time per step do not differ too much. As the flow 

speed is going down to M = 0.1, 0.01, the superiority of GC-SMAC becomes clear. MFGS’s computational 

time is long because internal Gauss-Seidel iteration is less likely to converge and the number of required 

iterations for the convergence [i.e., the residual being 1/10 of the initial value] is increasing. SSOR is used in 

GC - SMAC. 

 Figures 4 and 5 show the pressure distribution around the 10% chord length of the airfoil trailing edge for 

SLAU&GC-SMAC and SMUC (UD-SLAU&GC-SMAC) at M = 0.01. With SLAU, wiggles due to grid 

distortion due to O-type mesh is generated, but in UD - SLAU, they are eliminated by damping of disturbance 

in small cells near the airfoil. 

 

Figure 1 History of velocity residual of flow around NACA0012 at Mach=0.5. 
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Figure 2 History of velocity residual of flow around NACA0012 at Mach=0.1. 

 

Figure 3 History of velocity residual of flow around NACA0012 at Mach=0.01. 

 

 

Figure 4 Enlarged view of the contour of the pressure coefficient at 10% chord of the trailing edge of 

NACA0012 airfoil computed using GC-SMAC and SLAU. Mach=0.01. 
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Figure 5 Enlarged view of the contour of the pressure coefficient at 10% chord of the trailing edge of 

NACA0012 airfoil computed using GC-SMAC and UD-SLAU (SMUC). Mach=0.01. 

 

9.2 Computation of 1D sound wave by implicit methods 

 Consider propagation of sound generated by low M fluid motion. In this case, since the frequency of the sound 

is the same as that of the fluid motion, the time step determined considering the flow field resolution is 

sufficiently smaller than the sound period. On the other hand, if the Strouhal number is constant, the wavelength 

of the sound is proportional to 1 / M. Therefore, the grid size needed for resolving the flow is much smaller 

than the wavelength. In addition, if the time step size is constant, Courant number based on sound speed 

increases in proportion to 1 / M. 

 Therefore, in this case, the Courant number is large, but the time / space step is sufficiently smaller than the 

sound wave period / wavelength. A validation under such a condition will be shown considering calculation of 

sound waves by the implicit scheme. Here, an example of a one-dimensional acoustic wave (third order 

accuracy in space and second order accuracy in time) with 400 cells per wavelength, Courant number 10 (T/Δt 

= 40) is shown. 
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Figure 6 1D sound propagation computed using SMUC. 

 

Figure 7 1D sound propagation computed using TC-PGS1. 

 

 

Figure 8 1D sound propagation computed using FGMRES. 

 

 As a reference value, a combination of MFGS implicit scheme and Newton iteration of 8 iterations is used. 

This is an example of the least numbers of Newton iterations resulting in almost the exact solution. 

 Figure 6 shows the result of changing numbers of Newton iterations of SMUC from 8, 16, to 32. Table 1 also 
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shows the summary of each case and the normalized computational time. SMUC requires more than 32 

iterations. This is because implicit dissipation for sound waves included in SMUC is stronger than MFGS. 

However, MFGS is a scheme for high Mach number, and SMUC is not inferior in overall calculation efficiency 

in the simultaneous analysis for low Mach number flows. Considering computations for the flow field, MFGS 

requires Newton iterations several times more than SMUC for time accuracy for the flow field at low M, and 

hence, SMUC is more efficient overall. This is similar, even if Riemann flux is changed to SLAU. 

 The advantage of SMUC in the simultaneous analysis with low M flow is obvious when compared with the 

result of SLAU&TC-PGS1, using the concept of temporal derivative pre-conditioning method, as shown in 

Fig. 7. Here, Mc = 0.01 is set in consideration of application to a low M flow field. It takes 300 Newton iterations 

to obtain the same results as MFGS. As Mc becomes smaller, this situation becomes more severe. This is a big 

disadvantage compared to SMUC which does not require Mc. Also, it is a disadvantage that the influence of Mc 

remains even if the Courant number is reduced. 

 Figure 8 shows the results of F(Flexible)GMRES using TC-PGS 1 (Mc = 0.01) for matrix preconditioning, 

which showed the best efficiency in Ref. (9). FGMRES converges at about 8 iterations. The calculation time is 

about 63% of SMUC, which is the fastest in this case. However, since TC-PGS 1 is used for matrix 

preprocessing, it is necessary to adjust Mc in the same way. If the M further decreases, deterioration in 

calculation efficiency cannot be avoided. 

 In summary, SMUC can be said to have a great benefit in the simultaneous analysis of low M flow and sound 

waves in the sense that the adjustment of Mc is unnecessary and that the convergence improves automatically 

due to the decrease in numerical dissipation, when the local Courant number decreases.  

 

Table 1 Schemes and relative CPU time of 1D sound propagation cases. 

 

CASE Scheme #Newton Rel. CPU
MFGS 8 SLAU+MFGS 8 1.00
UD-SLAU+SMAC 8 SMUC 8 1.21
UD-SLAU+SMAC 16 SMUC 16 2.42
UD-SLAU+SMAC 32 SMUC 32 4.83
TC-PGS1 8 SLAU+TC-PGS1 8 1.00
TC-PGS1 100 SLAU+TC-PGS1 100 13.06
TC-PGS1 200 SLAU+TC-PGS1 200 26.42
TC-PGS1 300 SLAU+TC-PGS1 300 39.90
FGMRES 2 SLAU+FGMRES 2 0.78
FGMRES 4 SLAU+FGMRES 4 1.53
FGMRES 8 SLAU+FGMRES 8 3.07
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10 SUMMARY AND FUTURE CHALLENGES 

 We presented formulation and numerical examples of SMUC (SMAC-inspired Mach Uniform Compressible 

scheme) scheme introducing the idea of SMAC method into framework of δ-form implicit scheme and 

MUSCL finite volume method. 

- SMUC scheme consists of a combination of an implicit scheme (GC-SMAC) and a Riemann flux (UD-

SLAU) in the framework of the MUSCL-FVM. 

- GC-SMAC can compute very low Mach number flows stably without adjustment of flow-field-dependent 

parameters such as Mc, unlike the scheme based on application of time derivative pre-conditioning. 

- With respect to computational efficiency, its superiority is clear to conventional schemes, including time 

derivative pre-conditioning method when M <0.1 or less, while efficiency equivalent to MFGS etc. above 

subsonic speed being maintained. It is a great benefit that several times faster speed can be realized around 

M=0.1, which is frequently used in low Mach number aerodynamic problems. 

- In UD-SLAU, the pressure difference term in the mass flux term, which is the key to the low Mach number 

characteristic of the SLAU type scheme, has been corrected in a manner highly compatible with GC-SMAC. 

The adjustment of Mc, which was necessary for the stabilization, was removed. Furthermore, numerical 

examples show that simultaneous computations of low M flows and sound waves are possible with the same 

parameters. 

 

The following issues can be raised as the future work. 

- Although we could not fully describe it in this paper, MFGS, TC-PGS 1 and GC-SMAC have different 

properties with respect to internal linear iterations, and the knowledge obtained in MFGS is not sufficient. In 

MFGS, over-relaxation is not effective and 20 or fewer iterations to reduce the residual to 1/10 of its initial 

value is the optimum. On the other hand, over-relaxation is effective for GC - SMAC. Regarding the number 

of iterations, it takes 50-250 SSOR iterations to convergence to 1/10 of the initial residual. 

- In the pressure step, the current scheme uses a simple SSOR method, but it may be effective to use a more 

sophisticated method used in the pressure-based schemes. 

- Since the verification is limited to the basic flow field and sound propagation, demonstrations for a more 

realistic and complex fluid-acoustic coupling problem is necessary. 
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APPENDIX A.  Similarity with SMAC method 

In the GC-SMAC shown in Section 2, we will use a temporal first-order implicit method with only once of 

Newton iteration. By setting the value at the previous step as the initial value, and substituting the Eq. (18)for 

Eq.(38) in the first step, the following is obtained; 
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


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R
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 1******  (A1) 

Assuming the consistency of the left and right differentiation operators and the linearity of the viscous term, 

we can rewrite it as follows. 

0
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 mRuuu nn pt
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where the following definitions are used; 

**** uuu  n  (A3) 

It corresponds to advection step of SMAC method treating advection and diffusion implicitly. 

 Similarly, in the second step, substituting the Eqs. (19)(A3) into the Eq. (42) gives 
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R
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If the left and right operators match and the viscosity term is linear, we can rewrite it as follows. 
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  **22211 uu   ctpctRptp n
p

nn   (A5) 

In the case of c >> u, only the term multiplied by c2 remains, and it coincides with the pressure step of SMAC 

method as described below. 

**u
t

p

  (A6) 
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

 **1 uu  (A7) 

Therefore, GC-SMAC includes the SMAC method of incompressible CFD as a special case. 

 

APPENDIX B. Relationship with other implicit schemes and time derivative preconditioning schemes 

With the two-step method expressed by Eq. (38)-(43), there is no difficulty in numerical handling in the first 

step, and the treatment of the second step is the key. In this section, we show that the difference in the numerical 

methods for this second step produces a difference between SMAC-based pressure-based method and density-

based compressible methods such as LU-SGS[5] method. What is important is the diagonal dominance of the 

coefficient matrix when discretizing Eq. (41)(42). The diagonal dominance is essential in classical methods 

such as SOR. Also, when using the Krylov subspace methods such as GMRES, matrix preconditioning is 

indispensable for efficient computation, where the diagonal dominance is still required. 

In the SMAC method and the GC-SMAC method, by substituting Eq. (41) of the second step into Eq. (42), 

a Poisson-like equation having pressure as an only unknown variable is created. For incompressible flows, it 

becomes a pure Poisson equation, in which diagonal dominance is automatically satisfied; even in the case of 

compressible flows, diagonal dominance can be realized if the advection of pressure is upwinded. Thus, various 

linear solvers can be used. 

In the GC-SMAC method, it is understood that the discrete equations with the coupled pressure of both sides 

(of the cell-interface) are obtained by evaluating Eq.(41) not at the cell center, but at the cell boundary (Eqs. 

(50)(58)), when substituting the Eq. (41) into the Eq. (42). Such a selection is possible, since the Eqs. 

(41),(42) are coupled before discretization of the differential equation. 

On the other hand, in the compressible implicit schemes such as LU - SGS, velocity and pressure are solved 

simultaneously after discretizing the Eqs. (41),(42). In the discretization by the central difference, it becomes 
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diagonal dominance only under the CFL-like condition, and this is not realistic in the low M where the 

difference between the sound speed and the advection speed is large. For unconditional diagonal dominance, it 

is necessary to add numerical dissipation (=upwinding) according to the characteristic speed. To illustrate this, 

we consider the approximate factorization to the three terms Eq. (36) shown in the Section 3. Again, how to 

solve the second term is the key. 

The second step is expressed as follows. 

******** 1
uu 


  pt  (B1) 

*****2*** pctp   u  (B2) 

Let us consider a one-dimensional case. Eqs. (C1, C2) can be expressed in matrix notation as follows. 
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The eigenvalues are as follows, and it is understood that the Eqs. (C1, C2) correspond to the equation of 

sound waves. 

c  (B5) 

Next, some examples of compressible implicit schemes are shown. 

 

In case of LU-SGS 

In LU - SGS, by using the spectral radius (sound speed in this case), it is upwinded for diagonal dominance. 

The upwinded flux Jacobian can be written as follows. 

2

IA
A

c
  (B6) 

A similar method for diagonal dominance is applicable even in a method without factorization (the 

eigenvalues are different, though), and then, a concise method can be realized. On the other hand, due to this 
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modification, numerical dissipation, whose coefficient is sound speed, is added. When U<< c, this numerical 

dissipation is excessive for the velocity field, and the numerical dissipation becomes dominant. Such a problem 

does not occur at high M, but at low M, it causes strong damping on the velocity field. 

 

In the case of Weiss-Smith's time derivative pre-conditioning method 

Weiss-Smith[6]'s time derivative pre-conditioning method is equivalent to the scaling of the variation of the 

pressure field in this system, and the coefficient matrix becomes as follows. 
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By this change, eigenvalues also change as follows;  

c '  (B8) 

Using these eigenvalues, diagonal dominance can be realized as LU-SGS. If ε is the order of the M, the 

eigenvalues will also be on the order of the advection speed and the numerical dissipation will be an appropriate 

scale for the velocity field. However, it corresponds to making the fluctuation rate of the pressure field ε2 times, 

so that the physical temporal evolution of pressure, that is, sound waves, cannot be calculated accurately. 


