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Abstract. In this work, we focus on sampling-based methods for forward uncertainty
propagation, and in particular, on multifidelity sampling methods that employ a control
variate approach. The novel component of this work is to accelerate the sampling by
relying on important directions, as for instance in Active Subspaces. The idea consists of
discovering the important directions for each model in order to provide a reduced dimen-
sional link between the parameterization of each model fidelity and the relevant quantities
of interest. This accomplishes two goals: (i) enhancing the correlation between models,
and (7i) providing a mechanism to effectively bridge dissimilar input parameterizations.
We demonstrate the performance of our approach for two model problems.

1 INTRODUCTION

Uncertainty Quantification (UQ) is a key component within modern computational
science efforts, as it enhances the predictive utility of numerical simulations in support
of scientific discovery and advanced engineering design. In recent years, multifidelity UQ
has been demonstrated to be an effective strategy to accelerate UQ for complex problems
whenever less expensive lower accuracy models can be built for the original problem. In
this work, we focus intially on Monte Carlo sampling-based methods, and in particular
the multifidelity control variate method [8, 7], but the extension to the multilevel Monte
Carlo method [5] and the multilevel-multifidelity Monte Carlo strategy [4] is also possible
and a straightforward extension. The novel idea introduced in this work is to accelerate
the previous sampling techniques by relying on important directions, as for instance in
Active Subspaces [1] and related techniques (ridge functions, proper orthogonal decom-
position, etc.). The core of the idea is straightforward and consists in discovering the
important directions while performing the usual pilot runs for the multifidelity sampling.
Once the important directions (distinct for each model) are discovered, they are used to
define a shared space among all model fidelities on which the sampling procedures can
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be performed. This is expected to provide two advantages: (i) the correlation between
the quantity of interest (Qol) predictions for different models can be enhanced by em-
phasizing active directions along which these Qol have the most variation, and (i) since
this approach reduces an original dimensionality to a subspace for each model that can
be shared, it provides a bridging mechanism for the case where different fidelities have
dissimilar input parameterizations.

In this work, we briefly present the idea and demonstrate its performance on two
test problems. Additional application examples will be presented during the Conference.
The paper is structured as follows. The multifidelity control variate (CV) approach is
introduced in Sec. 2, and key features of the Active Subspace (AS) approach are presented
in Sec. 3. The combination of CV and AS is discussed in Sec. 3.2 and some numerical
examples are presented in Sec. 4. Final remarks close the paper in Sec. 5.

2 MULTIFIDELITY SAMPLING METHODS

In this section, we briefly present the control variate approach, which provides an ex-
ample multifidelity technique where our strategy can be deployed. The control variate is
well-known in statistics; it provides a strategy to accelerate a Monte Carlo (MC) simula-
tion by reducing its estimator variance. In the classical CV approach, the expected value
of the correlated estimate (e.g., from a low-fidelity model) is known and it is possible to
obtain a reduction of the variance of the standard MC estimator, which is only a function
of the correlation between the two models. However, in many practical applications, the
expected value of the low-fidelity model needs to be computed at the same time; therefore
we are interested in the so-called control variate with estimated control means [8, 7]. We
focus our attention to a single CV from a single low-fidelity model, however the approach
can be extended to multiple models as done in [9] or to latent variable networks as in [6].

We aim at computing statistical moments for a Qol Q@ = Q(&), @ : & — R where
¢ € = C R? is the vector of d random input parameters. We consider them to be
distributed according to the joint probability distribution p(&) = L p(&;). For simplicity,
we consider here the expected value E [Q] which can be approximated by a MC estimator
based on N realization of () drawn according to p(§) as

N

E[Q)= [ Q€m€)de ~ QN = 1 > Q) = 1> )

=1

For the MC estimator in Eq. (1) it is easy to show that its variance is Var (Q%C> =

Var (Q) /N. Therefore, in order to obtain a more reliable estimator, the number of
realizations N need to be increased; however, this can be untenable for the case of high
computational expensive simulations. In the following, we use the subscripts HF and LF
to indicate realizations from the high-fidelity and low-fidelity models, respectively.
Following [3, 4], the CV method with estimated control means can be written as follows

HF - ACV,HF _ AMCHF AMC,LF AMC,LF
E [Q } ~ QNHF - QNHF Ta <QNHF - QNLF > ’ (2)
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where Npp = Nyp + App = Npr(1 + ) and the additional LF evaluations App = rNyr
are drawn independently from the first set Nygp. The values for o and the additional

parameter r > 0 are obtained by minimizing the overall computational cost under the

constraint of the variance of the estimator Var (Q%XFHF> being equal to a target, namely

2. This constrained optimization has the solution

Var (QHF) r CHF p2
Ngp=———2>(1-— 2 d = -1 —_— 3
HF 2 ( T+1P> and T + Cpl— (3)

where p is the Pearson’s correlation between HF and LF and Cxp and Cpr are the com-
putational cost of each HF and LF, respectively. The final variance of the control variate
estimator QJCV\H/F is proportional to that of the standard MC estimator according to

Var <QJCV\H/F> = Var <Q%§F> <1 - :_ 1p2) : (4)

and, therefore, since 0 < p? < 1, Var ( A%};) < Var <QA§\V/[§F) It follows from Eq. (4)
that the performance of the control variate approach is directly related to the correlation

between the models. In this work, we are seeking an efficient strategy to maximize this
correlation for a given pair of HF and LF models.

3 LEVERAGING IMPORTANT DIRECTIONS FOR MULTIFIDELITY UQ

In UQ), the curse of dimensionality is a key challenge, such that considerable attention
has been devoted to techniques that can reduce the dimensionality of a problem. In this
work, our goal is to use dimension reduction techniques to identify the most relevant
directions for each model separately, and then exploit these directions to link different
fidelities. Important directions are identified as linear combinations of the original co-
ordinates and, in the context of sampling in the reduced space, the sample coordinates
can be always rotated back to the original coordinates of each model. It it reasonable to
assume that, if the important directions are aligned for different models, their correlation
might be higher along those directions than in the original space. Since a common shared
space can be always obtained between models if the input parameters (of each model)
are jointly Gaussian distributed, this strategy can also facilitate multifidelity approaches
for problems where the model fidelities have dissimilar parametrizations. For instance,
consider the case of performing a forward UQ analysis for a flying aircraft in which Large
Eddy Simulation (LES) is used as the high-fidelity model and steady Reynolds-averaged
Navier Stokes (RANS) equations are solved as a low-fidelity surrogate. In this case, the
RANS model parameterization will likely include a set of parameters that are not shared
with the LES code since they align more with the specific modeling approach than the
physical problem to be solved. Conversely, one can easily imagine cases where a HF model
contains a set of parameters that is not shared with lower fidelity models, as they derive
directly from the more detailed and sophisticated physical modeling being employed.
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As an example, we initially focus on a specific dimension reduction technique, namely
Active Subspaces [1]. However, the concept is equally applicable to other dimension
reduction strategies such as ridge approximation [2], basis adaptation and others.

3.1 The Active Subspaces example

We describe here a few concepts associated with the Active Subspace (AS) method
that are central to designing our strategy. The interested reader should refer to [1] for a
comprehensive discussion of the method. We consider a computational model represented
by f(€) where, as described in the previous section, £ € = C R? is the vector of d
random input parameters. We are interested in the forward UQ problem for computing
moments of quantity of interest (), and again we focus our interest on the expected value
for simplicity. We introduce the d x d matrix C as the expected value of the outer product

or the gradient vector V f = [0f /0, -+ - ,8f/8§d]T as

c= [ (1) (%) we)de )

Since the matrix C is symmetric and positive semidefinite, a real eigenvalue decomposi-
tion exists and C can be factorized as C = WAW?T where W is the d x d orthogonal
matrix whose columns are the normalized eigenvectors and A = diag {\1, ..., A\s} has the
corresponding eigenvalues Ay > --- > A\; > 0 as its diagonal entries. The eigenvectors
W define a rotation of R? and the eigenvalues A1,...q are arranged in decreasing order,
enabling a separation of the rotated coordinates into two sets, namely active and inactive
variable sets. We can write

A= [AA AJ and W = [W, W/, (6)

where Ay = diag {\1,..., A\, } and Wy contains the first d4 < d eigenvectors.

The original coordinates can be rotated to obtain the new active £, = W1L¢ € R4
and inactive £, = W& € R(4794) variables. This decomposition and rotation of the orig-
inal variable is effective because (as demonstrated in Lemma 3.2 [1]) the mean-squared
gradients of f with respect to the the active and inactive variables (ﬁ 4 and V; re-
spectively) is the sum of the eigenvalues associated to these sets. Another important
property is that any & can be expressed in term of active and inactive variables, i.e.
& = Wa&, + Wi&;. In order to generate a shared subspace between different models,
we assume the random input variables are distributed according to standard normal dis-
tributions, i.e. & ~ N(0,1;) (we will relax this later on). Hence, thanks to the linearity
of the rotation between the original and active/inactive variables it follows that the new
variable are also distributed as standard normal variable because E[£,] = WATE[£] =0
and Var (€4) = WA Var (§) Wa = Wr'I;, W, = I, (the same applies for &;). It
is important to note that the variance of the rotated variable will always be the unitary
matrix because we consider the case of independent random input and the columns of W
are always the normalized eigenvectors. This paves the way for obtaining a shared space
between different models, even in the case of dissimilar parameterizations.

4
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Ultimately, we are interested in the representation of the different models on the ac-
tive subspaces which are the range of the eigenvectors in W, ; hence, we want an ap-
proximation like fas(&4) =~ f(€). The map from & to &, is ill-posed and a regulariza-
tion needs to be chosen. Here, for sake of simplicity, we use an initial approximation
fas(&4) = f(Wa&,), which is true only if Z?:dAH Ai = 0. However, since we are ulti-
mately interested in the computation of the expected value of (), this approximation is
also equivalent to the use of a first order approximation of the conditional expected value
with respect to the inactive variables. By means of the AS techniques we transformed a d

dimensional integration problem in a reduced d4 integration (with p(€,) as distribution).

3.2 Dimension Reduction for multifidelity UQ

In this section, we briefly describe the main idea of enhancing multifidelity U@ based
on AS. We are interested in solving a forward UQ problem where the computational
model is an expensive computer code that we represent as fF, which admits as input
the vector of random parameters € € R4 and produces the scalar Qol QHF. We also
consider a less computationally demanding approximation of the same physical system,
namely f¥, which admits as input the vector of random parameters £€“ € R¥" and
produces the scalar Qol Q. We propose a simple idea: instead of sampling in the
original coordinates, we first search for the active directions for each model independently,
and then we sample in the common shared subspace aiming at maximizing the correlation
between models. Indeed it is reasonable to assume that correlation might be higher along
the directions (defined by the active variables) for which the variability of the function is
most pronounced. Our strategy includes the following steps:

1. For each model the AS representation is sought and the active variables are obtained
A= (WAH)Te™
= (WETE

(7)

2. The shared space between the models is defined as variables d = max (d}", df").

We call this vector of random variables £&* € R%;
. N, ilo
3. A set of Ny pilot realizations for £ ~ N(0, Ly;) is generated, i.e. {E*’(Z)}Z:ll t;
4. The set of Ny, realizations is rotated back to each set of original coordinates
independently for each model

EHF,(z‘) _ WEF [IdgF 0} 5*,(1')
(8)

. I ;
€LF7(Z) — WKF [ dx" 01 5*,(1) for i=1,..., Npiot-

5. The quantities of interest Q¥ and Q™(® are obtained by invoking the models;

6. The correlation p between the two models is computed and the optimal sampling
allocation (Ngp and Npr from r) is obtained from Eq. (3);

5
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7. The additional HF and LF simulations are carried out to reach the final sample
allocation (steps 6 and 7 are performed until convergence is reached);

8. Statistics and the predicted variance of the estimator are evaluated.

We note here that in order to obtain a shared space between models, we considered
standard normal variables for €7 and €. However, for general distribution cases, a non-
linear transformation between the actual distributions and standard normal variables can
be performed. For example, if we consider a uniform random variable w; ~ U(—1, 1), it is
possible to map to w; from the variable & ~ N (0, 1) through the inverse of the cumulative
distribution function w; = h(&;) = erf (§;/v/2). For more complex distributions, it is nec-
essary to resort to transformations such as Nataf or Rosenblatt. The model is ultimately
defined as the product of the original model and the transformation, i.e. f(&)h(€). The
drawback is that these transformations generally add non-linearity to the model, increas-
ing complexity in the UQ process. In our context, we hope to compensate for the increase
in the non-linearity of the models through the increase in their correlation. Indeed, if the
non-linearity introduced by h(€) is small relative to the global variability of f(£) along
the active directions, the correlation between models is expected to be preserved.

4 NUMERICAL TESTS
4.1 Analytical test case

We first demonstrate our approach for a simple analytical test problem, which has been
constructed to highlight features of the strategy. Consider two numerical models defined
as follows

f(z,y) = exp (0.72 + 0.3y) + 0.15sin (27x)

9
g(z,y) = exp (0.01z + 0.99y) + 0.15sin (37y) . (9)

We want to compute the expected value E [f] and we consider the model g(x,y) to be a
lower accuracy representation of f(z,y), therefore we want to use g as a control variate. In
Fig.1, the functions f and g are reported on the domain [—1,1]?. The model f exhibits a
variability along both the directions x and y, whereas g is essentially varying along y. In a
situation like this one the control variate approach is not effective because the correlation
between the two models is expected to be very low. In Fig. 2, we take z,y ~ N(0,1/3)
and report the scatter plot obtained evaluating 1000 realizations of f and g using the
same input values. For this set of samples, the correlation squared is approximately 0.05.
In Fig. 3, the active directions are reported for the two models. It is evident that the
active directions of f and g are nearly orthogonal for this case, however both functions
are approximately one-dimensional. We can therefore represent each function along the
direction ¢, where t = (W};)Tﬁ = (W;Z)Té for standard normal & ~ N(0,15).

Moreover, given a set of samples ¢ it is possible to obtain the original coordinates for f
and g by using & = Wt (independently for f and g). In Fig. 4, we report the functions
f and g along the active coordinates. It is evident that, after aligning the important
directions, ¢ essentially captures a similar trend to that of f (left plot). This can be

6
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Figure 1: Test model functions.
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Figure 3: Test model functions.

confirmed by generating 1000 random realizations of ¢ and then rotating back to each
of the original model coordinates independently (right plot in Fig. 4). The correlation
squared measured for this set of samples is approximately 0.9; therefore, we expect to
observe an increase in the performance of a CV method.
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Responses along AS Scatter Plot along AS
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Figure 4: Functions f and g represented along the active coordinate t with t = (W};)TE =

(WK)TE (Left). Scatter plot obtained by sampling ¢ and mapping back independently for
each model (Right).

In order to define the forward UQ problem, we assume the cost of the low-fidelity
model ¢ to be C*' = 0.01C"", which is representative of cost ratios observed in practical
applications. We fix a computational budget of 300 HF simulations as a reference and
compare four sampling estimators with equivalent cost: (i) the MC estimator, (7i) the
MC estimator obtained by sampling along ¢ (MC-AS), (%ii) a standard CV estimator with
100 HF realizations and 20000 LF simulations (MC-MF), (iv) a CV estimator obtained by
sampling along ¢ and rotating the samples back to the original coordinates independently
for each model (MC-MFAS). We note that, for the two estimators adopting the AS,
the active directions are estimated every time in order to include the variance of this
process within the overall estimator variance. In order to demonstrate the performance
of the strategy, we perform 1000 repetitions of each estimator and report the normalized
histograms for the estimated expected values.

Fig. 5 shows the distributions for the four mean estimators alongside the known ex-
act solution. As expected, all of the estimators are unbiased and the distributions are
approximately Gaussian. The MC and MC-AS are almost identical since the model f is
essentially unidimensional in the active variable t; therefore, the variance is entirely cap-
tured by the MC-AS technique and the same behavior as MC is recovered for the same
number of samples. Of course, MC is not the best choice for exploiting a lower dimen-
sional subspace; here we include it only for demonstration purposes. The MC-MF method
has been forced to redistribute the computational cost between HF and LF, irregardless
of correlation. In a realistic deployment, a pilot sample could detect the low correlation
and redistribute work (resulting in reliance on the HF model as in a standard MC, al-
though penalized by the cost of the N, samples). Once the sampling of two models

are linked through the active variable ¢t = (Wji)Tﬁ = (WZ)TE , however, the correlation is
increased and improvement is evident. The MC-MFAS recovers a sharpened distribution
for the expected value; i.e., its mean-squared error is much lower and the reliability of its
estimates is improved.

Next, we demonstrate the effect of relaxing the requirement on normal input distribu-
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1000 Estimator Realizations (LF cost = 0.01 HF cost)
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Figure 5: Normalized histograms for 1000 realizations of several expected value estimators.
The exact solution is reported as a black bold vertical line.

tions and incurring a nonlinear transformation of variables. If we assume x,y ~ U(—1,1),
we are still able to identify the active direction ¢; however, the resulting model exhibits
greater non-linearity as shown in Fig.6 (left plot compares the function f(¢) for normal
and uniform cases). The scatter plot in Fig.6 (right) show that the correlation has not
been degraded despite the greater non-linearity induced by the variable transformation.

Responses along AS (Uniform Distribution) Scatter Plot along AS
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Figure 6: Comparison between normal and uniform model input. The function f rep-
resented along the active variable ¢ is reported on the left. On the right, a comparison
between scatter plots obtained for the two input distribution cases.

4.2 One-dimensional wave propagation

As a demonstration for a more complex case, we study compressional elastic wave
propagation in a one-dimensional rod composed by 50 layers of two alternating materials
with uncertain properties, 7.e. uncertain non-linear stress-strain relations. We consider
an uncertain initial pre-loading for the rod and we are interested in the expected value
of the maximum stress in the rod after a finite time. We consider a high-fidelity model
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given by an high-resolution MUSCL-Hancock scheme on a fine mesh of 801 equally spaced
nodes, as opposed to a low-fidelity Godunov scheme of a very coarse mesh of 5 nodes. An
approximated Riemann solver is adopted for both models. The characteristics of the two
numerical models are summarized in Table 1. The problem has a total of 28 independent
uniformly distributed random variables.

N, | Ny A
Low-fidelity | 5 | 50 [36 x 10~ "
High-fidelity || 801 | 600 | 30 x 10~°

Table 1: HF and LF definition. The cost ratio between the model is ~ 2800.

In Fig. 7 (left), five random realizations for the two models are shown. In Fig.7 (right),
we report the scatter plot which shows that the LF model already displays good correlation
(approximately 0.89 squared) with respect to the HF model. Therefore, a challenge for our
approach is to improve an already high correlation. In this case, the AS are discovered
by using a linear regression; this is done to explore the case in which derivatives are
not readily available from an adjoint solution. Extension to alternative derivative-free
techniques to compute the AS is straightforward, but out of scope for this study.

LF 5 nodes
| HF 801 nodes

Stress
w
Low-Fidelity

NS <= =
AN\

NN\l

9
8
7
6
5L 4
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1
X High-fidelity

Figure 7: Five realizations of the HF and LF for the non-linear elastic propagation problem
(Left). Scatter plot for several realizations of the HF and LF (Right).

In Fig.8, we display the change in the scatter plot obtained when the sampling is
performed along the active variable (left plot) and the distributions for all of the estimators
(right plot) based on 250 repetitions. For this case, it is again evident that we obtain
a more reliable estimator by sampling in the active variable and rotating back to the
original coordinates for each model. The scatter plot on the left of Fig.8 shows how the
cloud of points is nearly collapsed to a line when the link between the models is enhanced
using the active variables.

4.3 Preliminary results on dissimilar parameterizations

To illustrate the flexibility of this strategy, we consider again the simple analytic case
of §4.1, but we include a dependence on an extra parameter z for f, i.e. f(r,y,z) =

10
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250 Estimator Realizations (Eq. Tot Cost 40 HF)
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Figure 8: Five realizations of the HF and LF for the non-linear elastic propagation problem
(Left). Scatter plot for several realizations of the HF and LF (Right).

exp (0.7z + 0.3y) + 0.15sin (27x) + 0.752°, where z ~ N(0,1/3). We still assume the
model g(z,y) to be as defined in Eq. (9). In this case, the standard control variate (MC-
MF) and sampling only over the active variables (MC-AS) are expected to perform as
in §4.1; therefore CV formulated by linking the two models through the active variables
(MC-MFAS) and sampling over the original variables (MC) are reported in Fig. 9. It is
evident that the strategy remains effective while bridging the distinct parameterizations
for the two models.

1000 Estimator Realizations (Eq. Tot Cost 300 HF)
0.3 T T T T T

T
MC 3
MC-MFAS 1 |

0.25 -

f =
o
B
5 o2}
2
‘@
& 015
o
=
5 o1f
Q
o
o
0.05 -
ol
0.98 1 102 104 106 108 1.1 1.12

Expected Value

Figure 9: Normalized histograms for 1000 realizations of the MC and MC-MFAS estima-
tors in the case of dissimilar parametrization.

5 CONCLUDING REMARKS

In this work, we propose the acceleration of multifidelity strategies (e.g., control vari-
ate Monte Carlo) by leveraging active directions separately for each model. The active
directions are used to link the different models in order both to enhance their correlation

11
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and to bridge dissimilar model parameterizations. The idea is demonstrated by means
of a simple analytical test as well as a non-linear hyperbolic propagation problem in 28
random dimensions. Additional test cases will be presented during the Conference.
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