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Abstract. We propose an efficient and robust coupled thermo-mechanical solid shell
formulation to enable the stability analysis of thin-walled structures. Of particular inter-
est is the ability to study the snap through behavior of panels subjected to a combined
thermo-mechanical environment. Three classical techniques, the assumed natural strain
(ANS) interpolation, the enhanced assumed strain (EAS) method and reduced integra-
tion with hourglass control are employed to avoid locking and improve convergence [1].
Although previous studies demonstrated that the solid shell element incorporating these
techniques performs well in static and explicit transient analysis, few of them discussed
the element performance in conducting transient analysis using implicit time integration.
We propose an analytical evaluation of the mass matrix, which guarantees both accurate
and efficient implicit transient analysis. Finally, the formulation is extended to include
thermo-mechanical coupling using the isothermal staggered scheme. Numerical exam-
ples demonstrate the accuracy of the present element in both mechanical transient and
thermo-mechanical stability analyses. The present element is robust in long-duration time
history large deformation simulations and is several times more efficient than the standard
quadratic solid element.

1 INTRODUCTION

In areospace engineering, thin-walled structures are widely used and often experience
instablility (e.g., snap-through) when subjected to mechanical forces and thermal loads.
The accurate analysis of the thermo-mechanical coupled problem demands a reliable and
robust finite element formulation. The quadratic solid element was implemented to con-
duct thermo-mechanical stability simulation in [1]. The quadratic element is accurate but
leads to very inefficient modeling. The low-order solid element has superior efficiency in
the detailed modeling but is prone to locking in simulations of bending or incompressibil-
ity.
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The development of solid-shell elements for the analysis of thin-walled structures has
been of interest for decades. Numerous articles discussed effective treatments to avoid
locking effects associated with the solid-shell element. The combination of enhanced
strain method (EAS) and assumed natural strain method (ANS) is demonstrated to be
very effective in removing the locking of the solid-shell element (e.g., [2,3]). A very efficient
Reduced Enhanced Solid Shell (RESS) element applied the reduced integration concept
with the EAS method was proposed in [4]. Cardoso et al. [5] and Schwarze and Reese [6]
further improved the accuracy and stability of the RESS element.

Recent decades also witnessed increased interests in the development of the solid-
shell element for transient analysis. Incorporating ANS and EAS locking treatments, a
solid-shell element for transient analysis in conjunction with implicit time integration was
developed in [7,8]. The solid-shell element accommodating explicit dynamic modeling was
also studied in [9,10]. Particularly, [9] showed that the solid shell element proposed in [6]
can be used for the efficient explicit analysis. Despite these extensive studies on solid-shell
elements, the behavior of the reduced integration solid-shell element in transient analysis
using implicit time integration is not yet reported in any other literature.

To solve the fully coupled thermo-mechanical system, monolithic and staggered split
schemes are often adopted. A monolithic algorithm applies the same time integrator to
the whole system and solves the two fields simultaneously. Monolithic schemes can achieve
unconditional stability with implicit time-stepping algorithms [11]. However, they result
into large, non-symmetric systems. Staggered algorithms result in two reduced and sym-
metric systems (one for each of the two different fields) that can be solved independently.
For example, the isothermal scheme consists of a isothermal mechanical phase followed
by a heat conduction phase with constant configuration.

In this work, an isothermal staggered solid-shell element for efficient thermo-mechanical
coupled analysis of thin-walled structures is presented. Numerical examples are included
to demonstrate the performance of the solid-shell element in capturing complex dynamic
behaviors of structures and conducting thermo-mechanical stability analysis.

2 FINITE ELEMENT FORMULATION

Based on the isothermal staggered scheme, element formulations in mechanical and
thermal fields are presented separately. Locking free techniques are empolyed to eliminate
locking effects in conducting mechanical analysis. In the thermal field, the solid-shell
element is similar to the conventional 8-node solid element with full integration.

2.1 Mechanical phase

Let us consider a continuum body in motion subjected to surface loads t and body
forces ρ0b. For the EAS method with the orthogonality assumption between the enhanced
strain and stress fields (

∫
V
S : EehdV = 0), the continuous weak form is

δΠ(u,Eeh) =

∫
Ω

S : δ(Ec + Eeh)dV +

∫
Ω

δu·ρ0üdV −
∫

Ω

δu·ρ0bdV −
∫

Γ

δu·tdΓ = 0 (1)

Note that isothermal staggered scheme solves the mechanical phase with constant tem-
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perature. Thus, the variation with respect to temperature(θ) is unnecessary in the me-
chanical phase. Equation 1 is discretized in space with the eight node solid-shell element.
The tri-linear shape function used for the isoparametric representations can be written in
the following polynomial form

NI = 1/8(1 + gI1ξ + gI2η + gI3ζ + hI1ξη + hI2ηζ + hI3ξζ + hI4ξηζ) (2)

where gI1 , gI2 , gI3 , hI1, hI2, hI3, hI4 (with I=1,...,8) represent coefficients of the shape function
at the node I.

The in-plane one-point reduced quadrature [4] and the modified ANS method [5] are
also incorporated to relieve the locking effect. To stabilize the singular stiffness matrix
induced by the reduced integration, Schwarze and Reese [6] defined the hourglass strain
with deviatoric character. Following those locking free techniques and transforming the
Green-Lagrange strain from convective coordinates to Cartesian coordinates with the
polynomial approximation of the transformation matrix, the strain can be represented by

Ec ≈
Ec?︷ ︸︸ ︷

Ec0 + ζEcζ + ζ2Ecζζ +

Echg︷ ︸︸ ︷
ξEcξ

dev + ηEcη
dev + ξζEcξζ

dev + ηζEcηζ
dev (3)

Inserting the variation of the displacement and strain in the matrix forms (δu = Nuδu
e,

δEc = Bcδue and δEeh = Behδwe) and solving the mechanical phase in reference config-
uration, the discrete weak form at the element level can be written as

δΠ(u(e), w(e)) = δueT
{∫

Ωe

Nu
Tρ0NudV üe +

∫
Ωe

BcTSdV −
∫

Ωe

Nu
Tρ0bdV −

∫
Γe

Nu
T tdΓ

}
+ δwe

∫
Ωe

BehTSdV = 0 (4)

To apply the Newton-Raphson method, the discrete form needs to be further linearized
as follows {

M∆üe + Ke
uu∆ue + Ke

uw∆we = f eext − f eint − f emass

Ke
uw

T∆ue +Ke
ww∆we = −f eEAS

(5)

Introducing the assumption that the infinitesimal volume element dVe = JdΩe = J0dΩe

(J0 = det(J |ξ=0)) and considering in-plane reduced integration, stiffness matrices and
residue vectors take the following simplified forms

f eint =

∫
Ωe

Bchg
dev

T
ChgEchg

devdV +

∫ 1

−1

Bc?TS?dζ4J0 and f eEAS =

∫ 1

−1

BehTS?dζ4J0

Ke
uw =

∫ 1

−1

Bc?TCBehdζ4J0 and Ke
ww =

∫ 1

−1

BehTCBehdζ4J0

Ke
uu =

∫
Ωe

{
Bchg
dev

T
ChgBchg

dev + Gchg
dev

T
ChgEchg

dev

}
dV +

∫ 1

−1

{
Bc?TCBc? + Gc?TS?

}
dζ4J0

Where Gc is used for computing the geometric stiffness matrices and can be obtained by
∂Bc

∂ue
. Note that the matrices and vectors related to hourglass control can be calculated

analytically. For details, the reader is referred to [6].
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The lumped mass and the consistent mass are defined as MLump
IJ =

∫
V
ρ0NIdV δIJI3×3

and MCons
IJ =

∫
V
NIρ0NJdV I3×3 respectively to accommodate the transient analysis. The

analytical expressions for the mass matrix terms are given by
MLump

IJ = 8J0ρ0rIδIJ (6)

MCons
IJ = 8J0ρ0

{
rIrJ +

1

3
(gI1g

J
1 + gI2g

J
2 + gI3g

J
3 ) +

1

9
(hI1h

J
1 + hI2h

J
2 + hI3h

J
3 ) +

1

27
hI4h

J
4

}
(7)

Prior to assembly of the global matrices, the EAS parameter increment ∆we can be
solved at the element level by using static condensation. Applying the Hilber-Hughes-
Taylor (HHT-α) time integrator [12] to solve the dynamic system, the tangent and the
residual corresponding to the Newton Raphson’s method are given by

Ke
T =

1

β∆t2
Me + α[Ke

uu −Ke
uw(Kww)−1Ke

uw
T ] (8)

Re = f eext − f eint − f emass + Ke
uw(Kww)−1f eEAS (9)

The above general form reduces to the classical Newmark algorithm for α = 1.

2.2 Thermal phase

The strong form governing equation for the thermal phase according to the first prin-
ciple of thermodynamics is

ρ0η̇ +∇ ·Q = R (10)

Q = −JkF−1F−T∇Xθ (11)

where η is the specific entropy, θ is the temperature, Q is the heat flux in the reference
configuration, R defines the external heat source, F is the deformation gradient and
J=det(F).

We use the St.Venant-Kirchhoff material model and the Helmholtz free energy Ψ given
as

Ψ =
1

2
[λ(trE)2 + 2µE : E]− 3κα(θ − θ0)trE + ρ0cv(θ − θ0 − θlog

θ

θ0

) (12)

where θ0 is the ambient temperature, α defines as thermal expansion coefficient and the
bulk modulus κ can be represented by the Lamé parameters as κ = λ+ 2µ/3.

Given that the entropy is defined as

η = − ∂Ψ

ρ0∂θ
=

3κα

ρ0

trE + c0
θ

θ0

(13)

the governing equation (10) can be rewritten as
ρ0cvθ̇ + 3καθtrĖ +∇ ·Q = R (14)

The weak form in the reference domain becomes∫
Ω

δθρ0cvθ̇dV +

∫
Ω

δθ3καtrĖθdV −
∫

Ω

(∇δθ) ·QdV +

∫
Γ

δθQndΓ−
∫

Ω

δθRdV = 0 (15)
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According to the isothermal scheme, the thermal problem is solved at fixed configu-
ration. Thus, Eq. 15 is only linearized with respect to temperature θ in the reference
configuration. We further push the problem forward to solve in the current configuration.
The linearized discrete form of the thermal equation at the element level is obtained as∫

Ωe

NθρcvNθdv∆θ̇ +

∫
Ωe

Nθ
3κα

J
trĖNθdv∆θ +

∫
Ωe

BT
θ kBθdv∆θ (16)

=

∫
Ωe

Nθrdv −
∫

Γe

NθqndΓ−
∫

Ωe

Nθρc0θ̇dv −
∫

Ωe

Nθ
3κα

J
trĖθdv −

∫
Ωe

BT
θ k∇xθdv

where Nθ is the same as Eq. 2 and Bθ = ∂Nθ

∂x
. Full integration quadrature is adopted

to obtain all matrices numerically. The backward Euler method is employed to solve the
equation.

3 NUMERICAL EXAMPLES

The finite element formulation presented above for the isothermal staggered analysis
has been implemented into the Finite Element Analysis Program (FEAP) [13]. In this
section, we demonstrate the robustness and accuracy of the element implementation in
capturing complex system behaviors of thin-walled structures.

3.1 Dynamic buckling of the hinged cylindrical panel

In this section, we consider a cylindrical panel with hinged longitudinal edges and
free circumferential edges. The geometry is described by radius R = 2540 mm, angle
of the circumferential edge θ = 0.2 rad, length of the longitudinal edge L = 508 mm
and panel thickness t = 12.7 mm. The material is prescribed to be elastic isotropic with
E = 310.275 MPa and ν = 0.3. A total of 256 (16×8×2) elements are used to discretize
the panel. Two layers of elements through the thickness allow for easy consideration of
the hinged boundary conditions. A downward ramp load with P0 = 400N and t0 = 0.01s
(see Fig. 1(a)) is applied at the panel center. The Newmark time integrator with time
step ∆t = 0.001s was used. Simulations using consistent and lumped mass are performed
respectively.

Figure 1(b) compares the time history of the displacement at the panel center obtained
from the present analyses with the numerical result in [14]. For both consistent and
lumped mass, good agreement between the present analyses and the reference solution is
obtained.

3.2 Dynamic buckling of a fully clamped spherical cap

We investigate the dynamic behavior of a spherical cap under a concentrated apex load
in this example. The geometry of the spherical cap is given by the radius of curvature
R = 120.904 mm, base radius a = 22.86 mm, thickness t = 0.400304 mm (Fig. 2(a)). The
material is assumed to be linear elastic with Young’s modulus E = 68948 MPa, Poisson
ratio µ = 0.3, and density ρ = 2620 kg/m3. As shown in Fig. 2(b), a concentrated
load P = 445 N is applied at the apex instantly and lasts for a duration of 500 µs.
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(a) Step load

0 0.05 0.1 0.15 0.2

Time (s)

0

10

20

30

40

D
is

p
la

ce
m

en
ts

 (
m

m
)

Consistent mass

Lumped mass

Meek and Wang, 1998

(b) Time history of the center displacement

Figure 1: Load and response of the cylindrical panel

Taking advantage of the axisymmtric configuration and loading condition, [15] analyzed
this problem with the 8-node axisymmetric element. In this study, we mesh the cap with
896 elements with only one layer of elements through thickness. The cap is fully clamped
at the base.

(a) Spherical cap (b) Step load for the spherical cap

Figure 2: Spherical cap subjected to a step load

The transient problem is solved using Newmark’s algorithm and time step ∆t = 2µs.
Fig. 3 plots the time history of the ratio between the displacement at the apex (W0) and
the cap height (H). The results of the present study agree well with the reference result
reported by [15]. The influence of lumped mass vs. consistent mass on the dynamic
response is also investigated. As shown in Fig. 3, the result given by the lumped mass
is closer to the reference solution than the one obtained using the consistent mass. This
might be due to the fact the reference result was based on the lumped mass idealization
in [15].
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Figure 3: Dynamic response of the spherical cap

3.3 Vibration of the pinched hemispherical shell

A recent study [16] reveals more details of dynamic analysis of the classical pinched
hemispherical shell problem and is followed here to examine the performance of the present
solid-shell element. The hemispherical shell has an 18◦ hole at the top, and is subjected
to a pair of inward and a pair of outward forces at the free edge with 90◦ apart. A time
dependent load shown in Fig. 4(a) is the same as in [16]. The geometry parameters are
radius R = 10, thickness h = 0.04. The material is assumed to be linear elastic with
E = 6.825× 107, ν = 0.3 and density ρ = 0.001.
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(a) Time dependent load (b) One quadrant of sperical shell

Figure 4: Hemispherical shell subjected to pinch load

Due to symmetry, only one quarter of the shell is meshed (Fig. 4(b)). The HHT−α time
integrator with α = 0.995 is applied to avoid numerical instability. Every simulation was
run for 5000 steps using the step size ∆t = 0.0002. As shown in Fig. 5, the displacement
histories of point A and B are compared to the reference solutions. The comparisons show
that even the relatively coarse mesh with 12× 12× 1 elements gives very close results to
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(a) Ux of point A
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Figure 5: Displacement history of point A and B

the reference solutions obtained with a mesh with 16× 16 shell elements in [16].

3.4 Thermo-mechanical snap-through of the shallow arch

The transient simulation of the structure undergoing snap-through is very challenging
due to the high non-linearity and potential loss of stability. Thus, the thermo-mechanical
modeling of the snap-through is an ideal test example to evaluate the robustness of the
present solid-shell element in long-duration time history analyses. A shallow arch with
two ends fully clamped is considered in this example (Fig. 6). The arch has radius R=180
in., span a = 12 in., transverse width w = 0.5 in. and thickness t = 0.04 in. The material
is assumed to be elastic isotropic with E = 206483 MPa, ν = 0.28, ρ = 7834 kg/m3,
thermal expansion coefficient α = 1.5 × 10−5K−1, specific capacity cv = 460 J

kg·K and

conductivity κ = 45 N/sK. The reference temperature is defined as 300 K.

Figure 6: Shallow arc illustration

We perform two simulations with the same harmonic load F = 2.9 sin(188πt) at the
midpoint but different initial temperatures of 290 K and 315 K respectively. All arch
surfaces are assumed to be insulated. In the isothermal staggered scheme, the HHT-α
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Figure 7: Time history of the displacement at the steady state

time integrator with α = 0.99 is applied to solve the mechanical phase and the backward
Euler method is used to solve the thermal phase. The simulation is conducted with the
time step ∆t = 1/(94× 200). All simulations are run until steady state is reached so that
we can safely exclude the possibility that the snap-through is the result of short-term
transient effects.

Fig. 7 shows the time history of the displacement corresponding to the the steady state
response. For comparison, all simulations are repeated using 27-node solid elements. It is
clearly revealed that the shallow arch undergoes periodic persistent snap-through in both
scenarios. The investigation also suggests that the present element can bring more than
80% reduction in the computational time to achieve the same accuracy as the 27-node
solid element. We can thus remark that the proposed solid-shell element can handle the
thermo-mechanical snap through modeling accurately and efficiently.

4 CONCLUSIONS

This paper presents an efficient eight-node solid-shell element for the thermo-mechanical
stability modeling of thin-walled structures. The isothermal staggered scheme is adopted
to solve the fully coupled system. To avoid locking, three effective locking-free techniques
are incorporated. We proposed an analytic method to calculate the mass matrix and in-
ertial term for an accurate and efficient transient analysis using implicit time integration.
Assuming fixed configuration, the thermal analysis is conducted by using the conventional
8-node thermal solid element with full integration.

The present element is locking-free in both the mechanical and the thermo-mechanical
analysis of thin-walled structures. Numerical examples confirm that the element is accu-
rate in predicting complex structural responses in transient analyses with implicit time
integration. The most striking feature of the present solid-shell element is the capabil-
ity to capture steady state response exactly, while also allowing for a 80% reduction of
computational time comparing with the quadratic solid element in the thermo-mechanical
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coupled analysis.
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