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Abstract. In this work, we describe a computational model of the human heart in-
corporating the great vessels and the four valves. The heart and vessel geometries are
segmented from computed tomography data; heart valves are represented by idealized ge-
ometrical models. The heart tissue is modeled as a viscoelastic material: the hyperelastic
transversely isotropic Guccione’s constitutive law is used to describe the elastic behavior
of the heart wall, while the viscosity is inherited from a permeating viscous fluid. The
anisotropy fields are determined using Poisson interpolation techniques to qualitatively
match anatomical muscle bundles so that the fiber vector field corresponds to the orienta-
tion of the cardiomyocytes. Realistic models for the aorta and pulmonary artery, modeled
as viscoelastic neo–Hookean materials, provide physiological outflow geometries for the
left and right sides of the heart respectively. Fluid-structure interaction is performed via
immersed–boundary spreading and restriction operators. Therefore, the solid model for
the heart is immersed in a fluid model for the blood. We assume that the blood can be
described by the incompressible Navier–Stokes equations. A Lagrangian finite element
approximation is used for the solid mechanics, while a finite difference MAC scheme is
employed for discretizing the fluid equations.

1 INTRODUCTION

In this paper, we describe some preliminary efforts in the development of a computer
model of the human heart which includes the four chambers, valves, pulmonary artery,
and ascending aorta. This model employs a hyperelastic description of the heart and its
components, which are immersed in blood described by the incompressible Navier Stokes
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equations. Our computational approach treats the fluid–structure interaction with the
immersed boundary method, with the solid displacement described in Lagrangian form
on a finite element mesh and the fluid pressure and velocity represented in Eulerian form
on a fixed Cartesian grid.

Other models for the entire heart, or its components, have been put forth in the
literature. We highlight several contributions, although this review is far from complete.
Peskin and McQueen developed one of the first fluid–structure interaction models of a
four chamber heart [9]. Structures in their model were represented as a collection of one
dimensional fibers, constructed with careful consideration of physiological muscle fiber
orientation. An extension of this approach to a model derived from computed tomography
(CT) data of a human heart can be found in [10]. Another model from Baillargeon et al.
considers only the heart myocardium, great vessels, and valves, without a model for the
fluid [1]. Their approach instead couples hyperelastic solid mechanics of the myocardium
to a description of the electrophysiology. Lastly, the University of Tokyo heart simulator
describes the blood, the heart structure, and the electrophysiology using the Arbitrary
Lagrangian Eulerian approach for fluid–solid coupling and homogenization to account for
the electrical dynamics [13, 12].

Recent research has also focused on refining models for certain parts of the cardiac
anatomy. Efforts related to electrophysiology, cardiac solid mechanics, and fluid–structure
interaction can be found in the review by Quarteroni et al. [11]. Gao et al. recently
assembled an immersed boundary model for the left heart, including the mitral valve and
aortic outflow tract, which captures some complex valvular dynamics [5]. We also mention
the work of Hirschvogel et al. in which they couple a biventricular solid mechanics model
to a reduced description the peripheral circulation [7].

To our knowledge, the work presented here is one of the first whole heart models with
a volumetric solid mechanical description of the valves, myocardium, and great vessels
which employs an immersed boundary approximation for the fluid–structure interaction.
This approach enables us to easily deal with large deformations during active contraction,
and more readily define various fiber–reinforced constitutive models for the myocardium.

2 MATHEMATICAL MODELS

Immersed boundary methods rely on an Eulerian description of the fluid and a La-
grangian description of the solid. Our presentation follows [4]. The Eulerian coordinate
domain is Ω ⊂ R3 with x ∈ Ω denoting an Eulerian coordinate. The set U denotes the
Lagrangian coordinate domain with X ∈ U a material point of the solid.

For a given time t, the motion map χ(·, t) : U → Ω relates Lagrangian points with their
corresponding Eulerian points. For example, at time t, the Eulerian point χ(X, t) ∈ Ω
corresponds to the material point X. The deformation gradient and its determinant are
defined as F = ∂χ

∂X
, J = det(F). Mathematical models for the fluid and solid are given

in terms of the total Cauchy stress:

σ(x, t) = σf(x, t) +

{
σs(x, t) if x ∈ χ(U, t)

0 otherwise.
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The tensor σf corresponds to a viscous incompressible fluid defined in terms of the Eulerian
velocity field u, the pressure p, and the dynamic viscosity µ as follows

σf(x, t) = −pI + µ
(
∇u+∇uT

)
.

Assuming a hyperelastic model can be used to describe the elastic behavior of the solid
tissue, the solid stress is derived from a pseudo–strain energy functional W = W(F).
Additionally, we assume that the strain-energy can be decomposed asW = W (F)+U(J),
where W (F) characterizes the isochoric deformations, while U(J) penalizes changes in
volume. Define the first Piola–Kirchoff stress as

Ps = DEV

[
∂W

∂F

]
+ JU ′(J)F−T ,

where the operator DEV [•] = (•) − 1
3
(• : F)F−T . The elastic part of the Cauchy stress

for the solid σs can be found using the transformation

σs = J−1PsFT .

In this formulation the fluid and solid stresses are superimposed in the evolving solid region
χ(U, t). This choice endows the solid with a viscoelastic response from the background
fluid. Denoting with ρ the fluid density, the strong form for the equations of motion, as
derived by Boffi et al. [2], read

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t) + fext(x, t), (1)

∇ · u(x, t) = 0, (2)

f(x, t) =

∫
U

∇X · Ps(X, t) δ(x− χ(X, t))dX

−
∫
∂U

Ps(X, t)N(X) δ(x− χ(X, t))dA(X), (3)

fext(x, t) =

∫
U

Fbdy(X, t) δ(x− χ(X, t))dX

+

∫
∂U

Fsurf(X, t) δ(x− χ(X, t))dA(X), (4)

∂χ

∂t
(X, t) =

∫
Ω

u(x, t) δ(x− χ(X, t))dX. (5)

Equation (1) describes balance of momentum, where f incorporates the stress of the solid
and fext the external surface forces Fsurf and body forces Fbdy. The solid imparts both
volumetric and surface force densities ∇X · Ps and −PsN on the fluid, which are spread
onto the fluid via delta function kernels. Equation (2) enforces incompressibility in both
the fluid and solid regions, and equation (5) requires the solid to move with the same
velocity as the background fluid.
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3 COMPUTATIONAL METHODS

The fluid equations are discretized with a Marker and Cell scheme on a fixed Cartesian
grid, where the pressure is represented as a cell–centered variable and the velocity is
represented at the sides of the cell. The motion of the solid is approximated with a C0

finite element method in its reference configuration. In particular, the volumetric and
surface force densities are projected onto a finite element basis by seeking G(X, t) so that∫

U

G(X, t) · Vh(X) dX = −
∫
U

Ps(X, t) : ∇XVh(X) dX

+

∫
U

Fbdy(X, t) · Vh(X) dX +

∫
∂U

Fsurf(X, t) · Vh(X) dA(X) (6)

for all Vh(X). This approximation to the force density is spread onto the fluid with a
delta function kernel:

g(x, t) =

∫
U

G(X, t)δ(x− χ(X, t))dX = S [G(X, t)],

where we call S the spreading operator. The adjoint of the spreading operator, denoted
J and called the restriction operator, is used to impose the no slip condition between the
fluid and solid. The equations of motion are then approximated by the following unified
weak formulation:

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + g(x, t), (7)

∇ · u(x, t) = 0, (8)

g(x, t) = S [G(X, t)], (9)

∂χ

∂t
(X, t) = J [u(x, t)]. (10)

To discretize the Lagrangian–Eulerian interaction encoded in the spreading and restric-
tion operators S and J , an approximation Sh is first constructed from a discretized delta
function kernel. Then, the discrete adjoint of Sh is used for J , ensuring energy conserva-
tion at the discrete level. For more details about numerical methods and timestepping,
please refer to [4]. Our simulations use the IBAMR1 software infrastructure.

4 MODEL CONSTRUCTION

The image data for this model consists of computed tomography (CT) scans of a
normal adult human heart obtained from Duke University Medical Center, with resolution
256× 156× 186. A dual source Siemens scanner was used for data acquisition. The slice
thickness is 0.8 mm and the XY resolution is 0.644 mm.

A hexahedral mesh for the four heart chambers was initially constructed from this
data. The aorta and pulmonary artery were separately segmented using ITK-SNAP. Our

1https://ibamr.github.io/
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Figure 1: Axial view (left) and coronal view (right).

data visualization and segmentation for an axial slice and coronal slice can be seen in
Figure 1. From ITK-SNAP, a stereolithography (STL) file was exported. This STL was
translated, decimated, smoothed, and trimmed using Paraview and Meshmixer to better
fit the hexahedral mesh of the ventricles. Since the vessel surfaces did not conform exactly
to the ventricular outflow tracts, a loft was created between the top of the interior surface
of the ventricle and the bottom of the vessel. Structure geometries were constructed
from the STL files in SOLIDWORKS (Dassault Systemes SOLIDWORKS Corporation,
Waltham, MA, USA). The loft and vessel were combined and exported as an ACIS file in
ASCII (SAT) format. Volumes for the great vessels and valves were imported into Trelis
(Computational Simulation Software, LLC, American Fork, UT, USA). Except for the
mitral and tricuspid valve chordae, triangular meshes were created for the surfaces, from
which a conforming tetrahedral mesh was created for the volumes. The chordae were
meshed with a single strand of hexahedral elements.

Figure 2: Heart geometry reconstructed from CT data.

Figure 2 displays the heart geometry in grey, with the pulmonary artery and aorta
geometries in blue and red respectively. The geometries for the great vessels overlap with

5
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the heart geometry by about 2 elements; from equation (5), the overlapping region moves
with the same velocity, ensuring the great vessels do not come apart from their outflow
tracts. Nothing further is done to glue these geometries together in our simulations.

Idealized models for the heart valves are displayed in Figure 3. The aortic and pul-
monary valves were created by forming a single leaflet, uniformly thickening it, and rotat-
ing it about the valve axis. The mitral and tricuspid valve surfaces were designed from a
parametrized superquadric surface described in [8]. We uniformly thickened this surface
and trimmed it to define the different leaflets. These models include an idealized descrip-
tion of chordae and papillary muscles. The position of the papillary muscle was chosen to
match the medical images. The valve models were registered with the heart geometry by
transformations peformed in SOLIDWORKS. To prevent separation of the the structures
in our simulations, all models intersect the heart and great vessel geometries.

Figure 3: Idealized valve geometry.

5 CONSTITUTIVE MODELS AND BOUNDARY CONDITIONS

In these preliminary simulations, we use a neo–Hookean constitutive model for the
valves, ascending aorta, and pulmonary artery. The strain energy functional takes the
form:

Wnh(F) =
µe

2
(I1 − 3) , U(J) = βs(J log J − J + 1),

for some material parameter µe, where I1 = tr(FFT ), and some additional parameter βs
which determines the strength of the volumetric penalization. The corresponding first
Piola-Kirchhoff stress is

Ps
nh = µe

(
F− I1

3
F−T

)
+ βsJ log JF−T .

The contractile heart tissue is modeled as a fiber reinforced solid using the transversely
isotropic constitutive model from Guccione et al. [6]. This formulation requires the speci-
fication of a fiber vector field f0 defined within the heart myocardium which qualitatively
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aligns with the orientation of the cardiomyocytes. Given specified material parameters
bf, bt, bfs, and c, the strain energy functional for the passive myocardium is defined:

Wmyo(F) =
c

2

(
eQ − 1

)
,

Q = bfẼ
2
11 + bt(Ẽ

2
22 + Ẽ2

33 + Ẽ2
23 + Ẽ2

32) + bfs(Ẽ
2
12 + Ẽ2

21 + Ẽ2
13 + Ẽ2

31),

with Ẽij components of the Green–Lagrange strain tensor 1
2
(FTF− I) rotated so the first

unit vector aligns with a specified fiber direction f0. Given a time periodic function T (t)
with period equal to a cardiac cycle, the active contractile part of the first Piola–Kirchoff
stress is given as T (t)Ff0 × f0. In sum, the total stress for the heart myocardium model
is:

Ps
myo(X, t) = DEV

[
∂Wmyo

∂F
+ T (t)Ff0 ⊗ f0

]
+ βsJ log(J)F−T .

Figure 4: Visualization of the heart fiber vector field. The colors correspond to distinct seed points.

Figure 4 depicts a visualization of the fiber vector field by plotting streamlines; different
colors correspond to distinct seed points. The fiber field is constructed by solving a
collection of Poisson problems on the heart mesh, and using gradients of the resulting
harmonic fields to define the local fiber orientation.

The heart is loosely held in place during our simulations through tether force boundary
conditions and body forces. These conditions take the form of a linear restoring force
depending on displacement from the reference configuration:

Ftether(X, t) = κ (χ(X, t)− χ(X, 0)) ,

with the parameter κ describing the tethering strength. We use this tethering as a body
force on the vena cavas and pulmonary veins, and as a surface force on the top of the
pulmonary artery and aorta. These conditions are built into the volumetric force density
and projected onto the finite element basis via equation (6).
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bf bt bfs c (kPa) Tmax (kPa)
4 1 2 2 1.2× 102

Table 1: Parameters for the myocardium constitutive model.

6 RESULTS

In this section, we provide some results during early ventricular systole. Visualization
of computational results is done using VisIt [3]. The active contraction function T (t) for
the left and right ventricles linearly increases from zero to its maximum value Tmax over
0.4 seconds. Parameters for the myocardium constitutive model are given in Table 1.

Velocity streamline plots are shown in Figure 5, at 0.131 seconds on the left and 0.117
seconds on the right. The color bar indicates the magnitude of the velocity field in cm/s.
Seed points were uniformly placed in spheres contained within the ventricles.

Figure 6 depicts displacement, with the color bar indicating magnitude of the displace-
ment field χ(X, t)−χ(X, 0) in cm. This slice highlights the dynamics on the left side of
the heart; in particular, the aortic valve fully opens and the mitral valve closes.

Snapshots in time for the magnitude of the velocity field, on a slice of the Cartesian
grid bisecting the aorta, are shown in Figure 7. This slice is superimposed with the
heart model. Figure 8 displays analogous results for the pulmonary artery. One can see
substantial flow through both of these great vessels.

Since the reference configurations for the aortic/pulmonary valves and the mitral/tricuspid
valves are closed and open respectively, we also investigate valvular dynamics during ven-
tricular contraction in Figures 9 and 10. In particular, during this part of the cardiac cycle
the aortic/pulmonary valves open and the mitral/tricuspid valves close. Our simulations
are able to capture these dynamics, as well as reveal that the pulmonic valve opens after
the aortic valve.

7 DISCUSSION

Our future work includes the construction of more realistic fiber reinforced constitutive
models for the valves, and the inclusion of pericardial boundary conditions and proper
loading conditions for the fluid. These enhancements will enable a baseline model for
the human heart, from which we hope to computationally investigate various clinical
interventions and medical devices.
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Figure 5: Velocity streamlines for the right ventricle on the left and the left ventricle on the right.

Figure 6: The color indicated the magnitude of the displacement field. On the left is the reference
configuration and on the right is a snapshot at time 0.132 seconds.
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