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Abstract. This work addresses the formulation of a new mixed-mode cohesive model,
able to handle the transition from small to large openings: the proposed model is an
extension of the isotropic damage model formulated in [Confalonieri and Perego, JSSCM,
11-2, 2017] for the simulation of mixed-mode delamination with variable mode-ratio, under
the assumption of small relative displacements.

1 INTRODUCTION

Delamination, often characterized by mixed-mode loading conditions with variable
mode-ratio, is among the most frequent failure mechanisms in laminated composite mate-
rials, due to their low strength along inter-layer interfaces. The computational strategies
for the numerical simulation of the delamination process often rely on the use of inter-
face elements based on the cohesive zone approach. While in the case of small failure
openings the interface behaviour is governed by the interaction between normal and shear
tractions, when large openings are involved at complete failure, other phenomena, such
as fiber bridging or interfacial fibrillation, affect the mechanical response and have to
be properly accounted for in the numerical modelling. Classical cohesive models, for-
mulated under the hypothesis of small openings, indeed fail to predict the delamination
growth either in the presence of extensive fiber-bridging phenomena or when large rel-
ative displacements are involved. As shown by a number of DCB tests performed on
fiber-reinforced composites, the development of large-scale fiber bridging causes an incre-
ment in the fracture energy [1, 2, 3]. This effect, mainly governed by the normal opening,
is typically described in terms of R-curves, expressing the progressive growth of the tough-
ness up to a steady-state value as a function of the crack extension. Furthermore, in the
presence of large openings, the rotational equilibrium of the cohesive element may not be
satisfied by classical cohesive approaches, as discussed in [4, 5].
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In this work the isotropic damage cohesive model formulated in [6] under the assump-
tion of small openings is extended to properly model both the cases of small and large
openings and the presence of large-scale bridging. The considered cohesive model is specif-
ically conceived for the case of mixed-mode delamination with variable mode-ratios and is
used to handle the small opening case. Consistent with the fact that fiber bridging and fib-
rillation are mainly driven by Mode I loading conditions, two different traction-separation
laws are considered in pure Mode I and II. A classical bilinear traction separation law is
adopted in pure Mode II. The traction separation law in pure Mode I is, instead, charac-
terized by a trilinear softening branch, as it has been proposed in [7, 8, 9]. A fibril element,
inspired to the directional cohesive element described in [10, 11] and conceptually similar
to the cohesive zone model proposed in [12], is adopted to account for large openings,
ensuring rotational equilibrium since the interface tractions and openings are co-linear.
In pure Mode I, it is assumed that the transition from the small openings continuum
model to the fibril one takes place at the damage level corresponding to the change of
slope in the softening branch. In mixed-mode, the transition is assumed to be triggered at
a damage level increasing with the mode-ratio, whereas no transition can occur in Mode
II. The insertion of the fibril element is smooth, with no discontinuities in the dissipated
energy, nor in the transmitted cohesive tractions.

In section 2, the damage cohesive model developed for mixed-mode delamiantion under
small relative displacements is briefly recalled and its formulation is generalized to the
case of different shapes of the traction-separation law in mode I and II. In section 3 the
procedure for the transition from the small openings model to the large openings one is
described. In section 4, the fibril element model adopted for the large displacement case
is described.

2 SMALL OPENINGS MODEL

2.1 Isotropic damage cohesive model

The small opening case is handled by means of a classical cohesive interface element.
Let us consider a cohesive zero-thickness interface Γ separating two adjacent material
layers: the two sides of the interface after separation are denoted as Γ+ and Γ−. Let
δ = [δn δs]T denote the vector of the small relative displacement between two initially
coincident points, belonging to the two displaced sides, and let t = [tn ts]T be the vector
of the tractions exchanged between the two sides at the same point: tn and δn represent
the components of tractions and openings normal to the initial interface Γ, while ts and
δs are the tangential components in the local orthogonal reference frame. Under the
assumption of small displacements, the interface local reference frame is uniquely defined
by the initial interface configuration. The isotropic damage cohesive model proposed in
[6] for the simulation of mixed-mode delamination problems, whose formulation is recalled
hereafter, is adopted to describe the interface constitutive behaviour. Only the case of
mixed-mode delamination is considered in this work: isotropic properties in the interface
tangent plane (transverse isotropy) are therefore assumed.

The starting point in the formulation of the cohesive model is the definition of the free
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energy potential Ψ per unit surface:

Ψ =
1

2
K (〈δn〉−)2 +

1

2
(1− d)K (〈δn〉+)2 +

1

2
(1− d)K(δs)2 (1)

being d an isotropic damage variable and K the stiffness paramater, defining the initial
elastic response and assumed equal in all directions. The Macauley brackets 〈 〉 are intro-
duced to account for the unilateral effect and to prevent interpenetration upon interface
closure. The cohesive tractions tn, ts and the strain energy release rate Y per unit damage
growth are obtained through the state equations:

tn =
∂Ψ

∂δn
= K〈δn〉− + (1− d)K〈δn〉+, ts =

∂Ψ

∂δs
= (1− d)Kδs (2)

Y = −∂Ψ

∂d
=

1

2
K (〈δn〉+)2 +

1

2
K (δs)2 (3)

Let us introduce the vectors of non-dimensional tractions and separations obtained by
normalizing with respect to the elastic threshold values in the pure modes. tI0, tII0 , δI0 and
δII0 as:

t̄ =

{
tn

tI0
ts

tII0

}
=

{
t̄n

t̄s

}
δ̄ =

{
δn

δI0
δs

δII0

}
=

{
δ̄n

δ̄s

}
(4)

For the sake of simplicity, only the tensile case will be addressed in the following. The
relation between non-dimensional tractions and opening displacements in the damage
range is therefore given by:

t̄n = (1− d) δ̄n, t̄s = (1− d) δ̄s (5)

The interaction between normal and shear interlaminar stresses is accounted for by
introducing a damage activation locus in the non-dimensional traction components plane.
Focusing on the tensile side of the non-dimensional tractions plane, three different damage
modes, whose combination determines the shape of the activation locus, are identified as
shown in Figure 1): a normal opening mode, associated to mode I delamination and
characterized by the normal n1; two mixed-mode mechanisms, one for positive and one
for negative shear, characterized by the normals n2 and n3 to two planes, inclined by
angles α and −α with respect to the tn axis. The angle α plays the role of a constitutive
parameter for the proposed model.

n1 =

{
1
0

}
, n2 =

{
sinα
cosα

}
, n3 =

{
sinα
− cosα

}
(6)

The effective tractions s = {s1 s2 s3}T obtained by projecting the traction vector onto
the damage modes are introduce to measure the distance of the current traction vector
from the activation locus:

s1 = t̄ · n1 = t̄n

s2 = t̄ · n2 = t̄n sinα + t̄s cosα

s3 = t̄ · n3 = t̄n sinα− t̄s cosα

(7)
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Figure 1: Activation domain: main damage modes

In a similar way, one can also define effective openings w1, w2, w3, conjugate to the
effective tractions, by projecting the interface opening displacements onto the directions
defined by a set of three structural vectors m1, m2, m3 depending on an angle θ (Figure
1), with:

m1 = an1 =

{
a
0

}
, m2 = b

{
sin θ
cos θ

}
, m3 = b

{
sin θ
− cos θ

}
(8)

and
w1 = δ̄ ·m1 = aδ̄n

w2 = δ̄ ·m2 = b
[
δ̄n sin θ + δ̄s cos θ

]
w3 = δ̄ ·m3 = b

[
δ̄n sin θ − δ̄s cos θ

] (9)

The constants a and b, governing the magnitude of the structural vectors, can be
determined by enforcing the following energy equivalence:

Ψ =
1

2
t · δ =

1

2

(
tI0δ

I
0 t̄

nδ̄n + tII0 δ
II
0 + t̄sδ̄s

)
=

1

2
s1w1︸ ︷︷ ︸
Ψ1

+
1

2
s2w2︸ ︷︷ ︸
Ψ2

+
1

2
s3w3︸ ︷︷ ︸
Ψ3

(10)

obtaining

a =
(
tI0δ

I
0 − tII0 δII0 tanα tan θ

)
, b =

tII0 δ
II
0

2 cosα cos θ
(11)

The projection of the interface tractions and openings onto the three damage modes
allows in a straightforward way for an additive decomposition of the free energy into three
contributions associated to the damage modes (eqn. (10)). The driving forces individually
acting on each one of the damage modes and promoting damage growth can be obtained
through the state equations. If, in addition, one sets

θ = arctan

(
tI0δ

I
0

tII0 δ
II
0

tanα

)
(12)
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one has:

Y 1 = −∂Ψ1

∂d
=

1

2
tI0δ

I
0

(
1− tan2 α

) (
δ
n
)2

Y 2 = −∂Ψ2

∂d
=

1

4

(
tanα δ

n
+ δ

s
) (
tI0δ

I
0 tanα δ̄n + tII0 δ

II
0 δ̄s

)
(13)

Y 3 = −∂Ψ3

∂d
=

1

4

(
tanα δ̄n − δ̄s

) (
tI0δ

I
0 tanα δ̄n − tII0 δII0 δ̄s

)
so that Y 1 ≥ 0 for α < 45◦; moreover, also the sum Y 2 + Y 3, representing the fraction of
the strain energy release rate associated to the shear-dominated damage modes, is always
non-negative, while either Y 2 or Y 3 can be negative. It holds that:

Y 1 + Y 2 + Y 3 =
1

2
tI0δ

I
0

(
δ
n
)2

+
1

2
tII0 δ

II
0

(
δ
s
)2

= Y ≥ 0 ∀δn, δs (14)

The energy decomposition in (10) naturally leads to the definition of an energy thresh-
old associated to each damage mode and to the formulation of a damage activation func-
tion ϕ, where each driving force is compared to the current value of its threshold:

ϕ =

(
Y 1

χ1
0 + χ1(d)

)k
+H(Y 2)

(
Y 2

χ2
0 + χ2(d)

)k
+H(Y 3)

(
Y 3

χ3
0 + χ3(d)

)k
− 1 ≤ 0 (15)

where the exponent k is a parameter of the model, H() is the Heaviside function, intro-
duced to avoid possible negative contributions of Y 2 and Y 3 to damage activation, and
χi+χi0 is the current threshold for the i-th damage mode, evolving during the decohesion
process as a function of the damage variable d. χi0 > 0 represents the initial threshold,
while χi(d) ≥ 0 is the internal variable, governing the threshold evolution for increasing
damage and determining the shape of the softening branch. Damage evolution is ob-
tained in a classical way enforcing the conditions ϕ = 0 and ϕ̇ = 0. The formulation of
the cohesive model is completed by the introduction of the following loading-unloading
conditions:

ϕ ≤ 0, ḋ ≥ 0, ϕḋ = 0 (16)

2.2 Traction-separation laws

Two distinct forms of the traction-separation law, different in Mode I and II, are
considered in this work to account for the fact that fiber bridging is promoted mainly by
Mode I loading conditions: a classical bilinear law in Mode II and a trilinear law in Mode
I (see Figure 2). The resulting mixed-mode response is shown in Figure 3.

Since the internal variables χi(d) govern the shape of the softening branches, their ana-
lytical expressions can be obtained by considering pure Mode I and II loading conditions,
i.e by imposing that:

δn 6= 0 δs = 0 for pure mode I (17)

δn = 0 δs 6= 0 for pure mode II (18)
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Figure 2: Traction-separation laws in pure modes I and II.

In the case of pure mode loading paths, the relationships between the isotropic dam-
age and the opening displacements can be established on the basis of purely geometric
considerations. The pure mode I traction-separation law can be described as:

tn =
tI0
δI0
δn for δn ≤ δI0 (19)

tn = (1− d)
tI0
δI0
δn = tIi +

(
tI0 − tIi

) δIi − δn
δIi − δI0

for δI0 ≤ δn ≤ δIi (20)

tn = (1− d)
tI0
δI0
δn = tIi

δIcr − δn

δIcr − δIi
for δIi ≤ δn ≤ δIcr (21)

where the symbols are defined in Figure 2. From (20) and (21), it is possibile to derive
the expression of the relative displacement δn as a function of the damage variable d for
the two softening branches:

δn = δI0

(
tI0δ

I
i − tIi δI0

)
(tI0δ

I
i − tIi δI0)− dtI0 (δIi − δI0)

for δI0 ≤ δn ≤ δIi (22)

δn = δI0
tIi δ

I
cr

(1− d) tI0 (δIcr − δIi ) + tIi δ
I
0

for δIi ≤ δn ≤ δIcr (23)

Similarly, in pure mode II loading, it holds that:

ts =
tII0
δII0

δs for δs ≤ δII0 (24)

ts = (1− d)
tII0
δII0

δs = tII0
δIIcr − δs

δIIcr − δII0

for δII0 ≤ δs ≤ δIIcr (25)
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Figure 3: Mixed-mode traction-separation law for varying mode-ratio.

thus, from equation (25):

δs =
δIIcr δ

II
0

δIIcr − (δIIcr − δII0 )d
for δII0 ≤ δs ≤ δIIcr (26)

The effective strain energy release rates per unit of damage growth under pure mode I
and II loading conditions can be found by substituting (17) and (18) into (13):

Y 1,I = 1
2
tI0δ

I
0 (1− tan2 α)

(
δ
n
)2

Y 1,II = 0 (27)

Y 2,I = 1
4
tI0δ

I
0 tan2 α

(
δ
n
)2

Y 2,II =
1

4
tII0 δ

II
0

(
δ
s
)2

(28)

Y 3,I = 1
4
tI0δ

I
0 tan2 α

(
δ
n
)2

Y 3,II =
1

4
tII0 δ

II
0

(
δ
s
)2

(29)

where Y i,I and Y i,II are the driving forces for pure mode I and mode II loading conditions,
respectively.

Since the behavior in pure mode II in (27)–(29) is uncoupled, i.e. a sliding displace-
ment δ̄s produces a zero driving force Y 1,II , associated to the normal opening damage
mechanism 1 in Figure 1, while Y 2,I 6= 0 and Y 3,I 6= 0 in pure mode I, it is necessary to
first define χ2(d) and χ3(d) in the pure mode II case and, then, define χ1(d) in the pure
mode I case on the basis on the results obtained for mode II. For both pure mode loading
conditions, the expression of the initial thresholds χi0 can be determined by imposing that
the activation criterion is fulfilled at the onset of delamination, i.e. ϕ = 0 for d = 0 and
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δ
m

= 1 with m = n in pure mode I and m = s in pure mode II:

χ1
0 =

1

2

tI0δ
I
0 (1− tan2 α)[

1−
(
tI0δ

I
0

tII0 δ
II
0

tan2 α

)k] 1
k

χ2
0 = χ3

0 = 2
1
k

1

4
tII0 δ

II
0 (30)

Similarly, the expressions of the internal variables χi can be found by imposing that
the activation criterion is met for d > 0 and δ

m
> 1.

χ2(d) = χ3(d) = 2
1
k

1

4
tII0 δ

II
0

[
δIIcr

δIIcr − (δIIcr − δII0 ) d

]2

− χ2
0 (31)

χ1(d) =
tI0δ

I
0 (1− tan2 α) (x̄1)

21−

[
(x̄1)2

(
δIIcr − (δIIcr − δII0 )d

δIIcr

)2
tI0δ

I
0

tII0 δ
II
0

tan2 α

]k
1
k

− χ1
0 (32)

being

x̄1 =
tI0δ

I
i − tIi δI0

(tI0δ
I
i − tIi δI0)− dtI0 (δIi − δI0)

for δI0 ≤ δn ≤ δIi (33)

x̄1 =
tIi δ

I
cr

(1− d) tI0 (δIcr − δIi ) + tIi δ
I
0

for δIi ≤ δn ≤ δIcr (34)

3 TRANSITION FROM SMALL TO LARGE OPENINGS

The transition from small to large openings is here modelled substituing the classical
interface element with a fibril element, whose model will be described in section 4. A
mixed-mode fibril insertion criterion is formulated assuming that, as in [8], the develop-
ment of fiber bridging in pure Mode I occurs in correspondence of the change in slope
of the softening branch of the Mode I traction-separation law and that in mixed-mode
conditions, the transition has to be activated for a damage level progressively increasing
with the mode-ratio from a minimum δIi in Mode I to 1 in Mode II (i.e. no transition
occurs in pure Mode II). The fiber activation criterion is written comparing the energy
G1 dissipated by Y 1, i.e. by the driving force associated to the opening damage mode,
with an energy threshold GI

i defined as the energy dissipated by the driving force Y 1,I

(see eqn. 27) in reaching the damage level dIi corresponding to the change of slope in the
softening branch along a pure Mode I loading path:

G1 =

∫ di

0

Y 1ḋ ≥ GI
i =

∫ dIi

0

Y 1,I ḋ (35)

where di is the damage corresponding to the fiber activation in mixed-mode conditions.
Once the criterion is fulfilled, the classical interface element is substituted with a fibril
element, without introducing any discontinuity in the transmitted tractions and in the
remaining energy to be dissipated.
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4 FIBRIL ELEMENT

The large opening formulation is based on the use of a directional (or fibril) cohesive
element [10, 11], shown in Figure 4a, which connects along a straight line two points
belonging to the interface flanks and coincident in the undeformed configuration. This
kind of element provides co-linear interface tractions and openings, since the cohesive
forces T+ and T− are transmitted along the direction of the fibril and is therefore able
to account for large openings in a consistent way, as discussed in [4]. The fibril element
has a non-zero initial length, given by the distance between the two points on the two
sides of the interface, measured at the fibril insertion. A rigid softening cohesive model
with linear softening branch, depicted in Figure 4b, links the magnitude T of the cohesive
force transmitted by the fibril element to its elongation ∆l, computed as the difference
between the length of the fibril in the current configuration and its initial length. The
cohesive law can be described by means of the following set of equations:

T = T0
∆lcr−∆l

∆lcr
for ∆l ≥ ∆l̄ loading (36)

T = T0
∆lcr−∆l̄

∆lcr
∆l
∆l̄

for ∆l < ∆l̄ unloading (37)

T = 0 for ∆l ≥ ∆lcr complete decohesion (38)

where T0 is the fibril initial cohesive traction, computed as the modulus of the traction
vector at fibril insertion, ∆l̄ is the maximum relative elongation, which works as the
historical variable and allows to distinguish between the loading and unloading phases,
and ∆lcr represents the critical fibril length corresponding to the ultimate opening. The
area beneath the curve represents the energy that remains to be dissipated by the fibril
before it reaches its critical elongation. To guarantee a smooth transition from the small
openings model to the large openings one, this energy is assumed to be equal to the
difference between the energy dissipation at failure due to Y 1,I in pure mode I and GI

i .
The cohesive tractions transmitted by a single fibril element are, thus, given by:

T+ = Tv+ T− = Tv− (39)

where the unit vectors v+ and v− are defined as:

v+ = −v− =
x+ − x−

‖x+ − x−‖
=

l

‖x+ − x−‖
(40)

being x+ and x− the spatial coordinates of the two string nodes attached to the interface
flanks Γ+ and Γ− respectively.

5 NUMERICAL EXAMPLES

The proposed transition procedure is assessed with reference to the a simple numerical
test on a single interface element, similar to the one proposed in [5]. Let us consider the
4-node interface element with two Gauss points shown in Figure 5a, whose bottom nodes
are held fixed, while the upper nodes are subjected to two distinct displacement vectors,
such that Ux

1+ = Ūf(t) Uy
1+ = V̄ f(t) Ux

2+ = cU Ūf(t) Uy
2+ = cV V̄ f(t), being Ū(t) and

9
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a b

Figure 4: Large openings cohesive model: a) fibril element, b) cohesive law.

V̄ (t) two displacement magnitudes and f(t) is the time amplitude, linearly increasing in
time from 0 to 1 with a total time of 1 s. Three different loading histories are considered
here, namely: Case A: Ū = 0 mm, V̄ = 0.3 mm, cU = 0, cV = 10; Case B: Ū = 0.15 mm,
V̄ = 0.3 mm, cU = 10, cV = 10; Case C: Ū = 0.5 mm, V̄ = 0 mm, cU = 1, cV = 0. The
adopted cohesive parameters are reported in Table 1. The numerical response obtained
with the proposed procedure is compared to the those obtained by means of the small
openings cohesive model and by adopting a fibril element since the beginning of the
analysis. In the latter case, an elastic-softening law with fracture energy equal to GI

cr and
peak traction given by tI0 is considered. The comparison is made in terms of the work of
separation computed at time t as:

Wcoh(t) =

∫
Γ

∫ δ(t)

0

tdδ dΓ small displacement cohesive model (41)

Wcoh(t) =

∫
Γ

∫ ∆l(t)

0

Td∆l dΓ fibril element (42)

In case A, the upper nodes of the interface are subjected to a vertical displacement of
different magnitude, while in case B both horizontal and vertical displacements are applied
in order to locally achieve mixed mode conditions in the small openings regime. It could
be noticed from Figures 5b,5c that in both cases the numerical response computed with
the proposed model initially coincides with the small openings one and then it deviates
from it, as a result of the transition to the fibril model. The transition criterion is met
at two subsequent time instants at the two Gauss points. Also the pure fibril model with
elastic-softening behaviour is not able to catch the response predicted with the proposed
model: this is due to the fact the fibril elongation at complete decohesion in the case of
the insertion of the fibril element from the beginning is significantly lower than the one
of the present model and that the area beneath the elastic-softening traction-separation
law always coincides with the fracture energy in pure Mode I, independent of the actual
mode-ratio. Moreover, both cases A and B show that the transition to the fibril element
correctly accounts for the rotation and elongation of the interface’s middle plane. Finally,
in case C, only tangential displacements are applied, so that the fibril insertion criterion
is never met and the numerical response obtained with the proposed model coincides with
the one of the small openings mixed-mode cohesive model.
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a b

c d

Figure 5: Numerical example: a) Interface element, b) case A, c) case B, d) case C.

tI0 tIi tII0 GI
i GI

cr GII
cr K α k

10 MPa 3 MPa 15 MPa 1 N
mm

2 N
mm

2 N
mm

100 N
mm3 30◦ 2

Table 1: Adopted cohesive properties.

6 CONCLUSIONS

In this work the isotropic damage cohesive model formulated in [6] under the assump-
tion of small openings is extended to properly model both the cases of small and large
openings and the presence of large-scale bridging or interfacial fibrillation. The strength
of the proposed procedure is the capability to handle the transition from the small dis-
placement case, in which the mechanical behaviour of the interface is governed by the
interaction between normal and tangential openings, to the case of large openings, in
which fiber bridging develops affecting the interface’s response. Moreover, the adopted
fibril element is able to account for large openings in a consistent way, preserving rota-
tional equilibrium, since the interface tractions and openings are co-linear.
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