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Abstract. The Logarithmic finite element (LogFE) method extends the Ritz-Galerkin
method to approximations on a non-linear finite-dimensional manifold in the infinite-
dimensional solution space. Formulating the interpolant on the logarithmic space allows
for a novel treatment of the rotational component of the deformation, and induces a strong
coupling between rotations and translations. The Logarithmic finite element method pro-
vides a transformation of the initial configuration that is not restricted to an isoparametric
formulation.

1 Introduction

In the Ritz-Galerkin method, the configuration of a material body is fully determined
by the translations of its material points (or the generalized coordinates of the points
of a representation of the body) relative to the initial configuration. As a result, rota-
tional field values are usually given as elements of a subspace of the state space that is
completely independent from the subspace of translations. Models based on rotational
pseudo-vectors, as well as models based on the special orthogonal group of rotations,
SO (n,R), both share these characteristics. For an overview of geometrically exact beam
formulations, involving different approaches to modeling rotations, see [8, 9, 12].

The Logarithmic finite element (LogFE) method [10, 11, 12] extends the Ritz-Galerkin
method to approximations on a non-linear finite-dimensional manifold in the infinite-
dimensional solution space. This manifold can be constructed so that it contains both
translations and rotations. As a result, it is possible to induce a strong coupling of the
rotational and the translational component of the deformation of a body. V. Sonneville,
A. Cardona, and O. Brüls [14] propose a geometrically exact beam formulation that maps
the centerline of the beam into the special Euclidean group, SE (n,R) = SO (n,R)nRn.
By contrast, the Logarithmic finite element method formulates a transformation, i.e.
a map of the initial configuration to the current configuration. However, the special
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Euclidean group, which is a semidirect product, turns out to be unsuitable for defining
such a transformation. We therefore construct a Lie group based on a direct product
of rotations and transformations in order to formulate the transformation of the initial
configuration.

In section 2, we briefly touch on the notion of the constraint manifold on the con-
figuration space, which is central to formulations of structural elements such as beams.
Section 3 provides some basic results of the theory of Lie groups, and may also help to
identify those aspects of Lie group theory in the literature that are relevant to the Log-
arithmic finite element method. We encourage readers unfamiliar with the mathematical
background to consult the introductions to Lie group theory referenced in this section.
Section 4 describes how a transformation of the initial configuration is defined on a Lie
algebra and highlights the importance of constructing the Lie algebra in way that ensures
the independence of the impact of the degrees of freedom at the nodes of the element.
Section 5 explains how the Logarithmic finite element method extends the Ritz-Galerkin
method. In section 6, we construct a specific Lie algebra as part of the formulation of
beam models based on Bernoulli as well a Timoshenko kinematics and present the action
of its associated Lie group on the initial configuration of a beam. Section 7 concludes the
exposition with some general observations.

2 Configurations and constraint manifolds

Following C. Truesdell and W. Noll [15], we define the material body B as a compact m-
dimensional differentiable manifold endowed with a finite measure µ. A material point of
the body is denoted P . The physical space S is defined as an n-dimensional differentiable
manifold, with n≥m. A configuration κ∈C1(B,S) is given as a differential embedding
of the body into the physical space. The configuration manifold Q is given as the set of
all configurations.1

The constraint manifold C comprises all admissible configurations of the material body
[2]. For example, the configuration κ∈Q of a three-dimensional beam in a three dimen-
sional physical space that is torsion-free and whose centerline remains in a given plane in
the physical space is fully determined by the configuration κ̃∈ Q̃ of its one-dimensional
centerline B̃ in a two-dimensional Euclidean space E2. κ̃ may be given as the map of a
set of points representing the body to a space S̃ of generalized coordinates that are not
restricted to actual spatial positions in a physical space. It may, for example, include the
orientation of the cross-sections of a beam as generalized coordinates. The embedding
ι : Q̃→Q defines the admissible configurations of the beam.

In the Logarithmic finite element method, the approximation space is generally con-
structed as a finite-dimensional submanifold Ch of the constraint manifold C.

3 Lie groups and Lie algebras

Throughout this text, we follow the notational conventions of the academic field in
which the respective knowledge emerged. Therefore, while we seek global consistency

1For the notation, see also [2].
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in the notation related to mechanics, mathematical background will be presented using
scoped notation. For accessible introductions to Lie group theory, see [3, 4, 5, 7].

3.1 Basic concepts

A Lie group G is a differential manifold endowed with a differentiable operation ϕ :
G→Aut(G), g 7→ϕg, such that ϕg :G→G, h 7→ϕg(h). Thus, the group product is given
as G×G→G, (g,h) 7→ gh :=ϕg(h). We denote the identity element of G as eG, ϕeG is
the identity map on G. Note that, for a translational Lie group T , with s,t∈T , we have
st :=ϕs(t) = s+ t, and therefore eT = 0. A Lie group may be endowed with a group action
σ on a manifold M such that for g,h ∈G, m ∈M , σg ◦σh(m) = σgh(m). A matrix Lie
group is isomorphic to a closed subgroup of some general linear group GL(n,K), with
n∈N, K∈{R,C}.

The tangent space ofG at the identity element, TeG, is a real vector space. ForX ∈TeG,
let γX :R→G define an integral curve γX such that γX(0) = eG, γX(s+ t) = γX(s)γX(t)
and ∂tγX(t)

∣∣
t=0

=X. Then,

expG(tX) := γX(t) . (3.1)

The group product on G gives rise to the adjoint representation ad :TeG→End(TeG).
For Y ∈ TeG, g ∈G, let exp◦Adg(Y ) := gexp(Y )g−1, which implies Adg(Y ) := gY g−1 for
matrix Lie groups. Then,

adX = ∂tAdexp(tX)

∣∣
t=0

. (3.2)

ad and adX are linear functions. The vector space TeG, endowed with the adjoint repre-
sentation, is referred to as the Lie algebra L(G) associated with the Lie group G, denoted
as g hereafter. The Lie bracket, also referred to as the commutator, on g is defined as
[X,Y ] := adX(Y ). If G is a matrix Lie group, the multiplication on Mn (K) can be used,
and

[X,Y ] =XY −Y X. (3.3)

We denote the vector space of a Lie algebra g as Vg. Thus, VL(G) =TeG.
A Lie group G is called abelian if its elements commute, i.e., for every g,h∈G, gh=hg.

A Lie algebra g is called abelian if, for every X,Y ∈ g, adX(Y ) = 0. A Lie algebra g is
abelian if, and only if, the connected Lie groupG0 = 〈expg〉 containing the identity element
is abelian. All Lie groups considered in the following exposition are connected.

A subalgebra h of a Lie algebra g is a subspace of g such that [X,Y ]g∈h for all X,Y ∈h.
A subspace U of g, equipped with the Lie bracket on g, generates the subalgebra 〈U〉g≤g,
the smallest subalgebra of g that contains U .

3.2 Direct and semidirect products

The semidirect product G=NoαH of two Lie groups N and H, with N×{eH} being
a normal subgroup of G, is the manifold N×H, endowed with the product

G×G→G,
(

(n,h) ,
(
n′,h′

))
7→
(
nα
(
h,n′

)
,hh′

)
. (3.4)
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The Lie algebra L(G) = noβ h, subsequently referred to as g, of the semidirect product
G is given by the direct sum of the vector spaces Vg⊕Vh, endowed with the Lie bracket

g×g→ g,
(

(Y,X) ,
(
Y ′,X ′

))
7→
(
β
(
X,Y ′

)
−β
(
X ′,Y

)
+
[
Y,Y ′

]
,
[
X,X ′

])
. (3.5)

With the isomorphism π : n×{eH}→ n, (Y,0) 7→ Y we have β(X,Y ) = π ◦ ad(0,X) (Y,0)
[5, pp. 308–9][6, pp. 102–4]. For Lie algebras based on matrix Lie groups, we obtain
β(X,Y ) = π ◦

(
(0,X)(Y,0)− (Y,0)(0,X)

)
. Let N and H be closed subgroups of some

general linear group GL(n,K), let σ denote the group action of H on N , τ the action of h
on n, both derived from the matrix multiplication on Mn (K). Then, for α(h,n′) =σh(n

′),
using (3.2), we have β(X,Y ) = τX(Y ).2

The direct product G×H and the direct sum g⊕h can be understood as special cases
of the semidirect product and the semidirect sum, with α(h,n′) =n′, β(X,Y ) = 0. In the
notation of the direct product of Lie groups and the semidirect sum of Lie algebras, we
omit the functions α and β.

The product operations of Lie groups that are subgroups of GL(n,K) can be derived
from the matrix multiplication on Mn (K). Thus, for the semidirect product NoαH, with
N =Kn−1, nn′=n+n′ for n∈N , H = GL(n−1,K), the group action σ of H on N given
by the action of GL(n−1,K) on Kn−1, and α(h,n) =σh(n), we obtain

NoαH ∼=


(
h n
0 1

)
∈GL(n,K)

∣∣∣∣∣∣n∈N,h∈H
<GL(n,K) . (3.6)

3.3 The exponential function and its derivative

The exponential map expG : g→G, for a Lie group G, is given by X 7→ γX(1) (see
equation (3.1)). We will omit the subscript if there is no ambiguity. From the theory of
differential equations, we obtain the result [5] that, for matrix Lie algebras,

γX(1) = exp(X) =
∞∑
k=0

1

k!
Xk. (3.7)

Note that, while the exponential function is not necessarily surjective onto G, it is locally
diffeomorphic at 0, and expG(0) = eG.

The logarithmic derivative δ of the exponential map exp : g→G, discussed in [5], is
given by

δ(exp) : g→Aut(g) , X 7→
∞∑
k=1

(−adX)k−1

k!
. (3.8)

The derivative of the exponential map is given as

Dexp :X 7→ exp(X)δ(exp)(X) . (3.9)

Dexp(X)∈Diff
(
g,Texp(X)G

)
is a linear function.

2In [12], subscripts in the notation of semidirect products and sums refer to functions α′ and β′, such
that α(h,n) = σH

(
α′(h)

)
(n), β(X,Y ) = σh

(
β′(X)

)
(Y ), and the group actions σH and σh are induced by

the operations of GL(n,K)≥G and gl(n,K)≥ g.
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Christian Schröppel, Jens Wackerfuß

4 Shape functions on the Logarithmic space

4.1 Transformations

In the following, all configurations refer to elements of the discretized configuration
space Qh. We omit the respective subscripts for brevity.

A configuration κ associates a point in the physical space S to each material point of
the body B. It can thus be understood as a set in B×S. Let π :B×S →B, (P,x) 7→P .
Then, a bundle morphism χ :Q⊇Q→Q, (P,x) 7→ (P,x′), satisfies π ◦χ(κ) = π(κ) for
all κ∈Q. We refer to a bundle morphism of a configuration as a transformation. We
denote the restriction of χ to a single finite element as χe. We assume that a single
finite element can be parameterized by a chart (Ωe,Je) on the body B. We identify
the points of Ω� := Je(Ωe) by ξ. Let Qe := Ω�×S denote the configuration space of a
finite element, πe : Ω�×S→Ω�, (ξ,x) 7→ ξ. Then, a bundle morphism χe :Qe⊇Qe→Qe,
(ξ,x) 7→ (ξ,x′), satisfies πe ◦χe(κe) = πe(κe) for all κe ∈Qe. In the following, we will
define the transformation χe of a finite element, which, in conjunction with a given initial
configuration κe0, also defines its current configuration κeτ .

Let U denote a subspace of a Lie algebra g. A basis in U is given by the vectors
V = (vk)1≤k≤K . We associate one or more shape functions Nk,l(ξ), 1≤ l≤L, with each
basis vector vk. Each shape function is associated with a degree of freedom uk,l at the
element level. In order to obtain a global finite system, suitable degrees of freedom at the
element level may be linked to global degrees of freedom, while other degrees of freedom
may remain as internal degrees of freedom. With these components, the transformation
of a finite element is given by

χe : (ξ,x) 7→
(
ξ,σg(ξ)x

)
, (4.1a)

with

g(ξ) = exp
(
X(ξ)

)
∈G, (4.1b)

X(ξ) =
∑

1≤k≤K
1≤l≤L

uk,lNk,l(ξ)vk ∈ g=L(G) . (4.1c)

σ is the action of the Lie group G on the physical space S.
The concept of the transformation of a configuration can similarly be applied to con-

figurations κ̃∈Q̃, which identify elements of the constraint manifold C. The beam models
presented in section 6 will be based on transformations in Q̃.

4.2 Degrees of freedom

In general, we aim to separate the impact of changes of different degrees of freedom
on different components of the total deformation of a finite element as much as possible.
Among other advantages, such a separation allows for the meaningful definition of global
degrees of freedom. For example, given a material point P ∈Γe,e

′
= Ωe∩Ωe′ , two degrees

of freedom on the element-level in Ωe and Ωe′ , which define the translation of P in a
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given spatial direction, may be associated with a global degree of freedom governing the
translation of P .

The degrees of freedom uk,l whose shape functions do not do not vanish of sufficient
order at a given node I at P ∈Γe,e

′
impact the deformation of the finite element at that

node in a significant way.3 We denote the set of vectors vk associated with these degrees
of freedom as VI . The separation of the impact of degrees of freedom on the element level
necessitates that the elements of the subspace 〈VI〉 belong to a subalgebra h≤ g :=L(G)
that is given as the direct sum of its constituent Lie algebras, i.e. h=

⊕
m∈M hm. This

ensures that non-commutativity is restricted to sets of degrees of freedom that are related
to intrinsically non-commutative deformations. For example, the impact of rotations in
the Euclidean space is non-commutative, and sets of scalar degrees of freedom related to
such rotations may be best understood as a single vector-valued degree of freedom.

As noted above, the span of the set of vectors VI is a subspace of the vector space of
the Lie algebra g. However, if endowed with the Lie bracked of g, it is not necessarily a
subalgebra of g. While the transformation g(ξ) itself can be formulated without making
use of the Lie bracket on g, the derivatives of g(ξ) with regard to ξ must be computed
using the adjoint representation, as shown in section 3.3.

5 Extending the Ritz-Galerkin method

5.1 Non-linear transformations as a generalization of displacements

In the Ritz-Galerkin method, the transformation χ of the initial configuration κ0 is
restricted to displacements of the physical locations of material points. Thus, the group
action of the Lie group G in equation (4.1a) on the spatial locations x0 of material points
in the initial configuration must be restricted to a translation. Furthermore, in the Ritz-
Galerkin method, the interpolant is given as a linear combination of the shape functions.
However, the exponential function is generally non-linear. Thus, in order for equation
(4.1a) to satisfy the requirements of the Ritz-Galerkin method, the Lie group G itself
must be translational, i.e. its group operation must be given as gh= ϕg(h) = g+h for
g,h∈G.

With regard to the exact solution, denoted u, every deformation, independent of the
formulation of the pointwise maps transforming the positions of material points in the
physical space, can be expressed as a pointwise translation of the material points. The
exact solution space V 3 u can therefore be conceived as an infinite-dimensional space of
displacements. We will retain this notion of the exact solution space in the discussion of
the Logarithmic finite element method.

5.2 The approximation space as a non-linear submanifold

In the Ritz-Galerkin method, the approximation space Vh is given as a finite-dimensional
linear subspace of V . Inter alia, this implies that, given deformations u∗h,u

∗
h
′ ∈Vh, all lin-

ear combinations of these deformations are also elements of the approximation space Vh,
and may be obtained by choosing an appropriate set of values for the degrees of freedom

3For a discussion of the requirements related to the order of zeros of different shape functions, see [12].
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associated with the shape functions that generate Vh. The space of degrees of freedom
thus maps linearly onto Vh. The optimal approximation uh satisfies the Galerkin orthog-
onality a(uh−u,v) = 0 for all v∈Vh. In this equation, a is a bounded, symmetric bilinear
form that is coercive on V and depends on the chosen finite element model [1].

By contrast, in the Logarithmic finite element method, the space of degrees of freedom
maps onto a generally non-linear submanifold Mh of the exact solution space V . As a
result, the Galerkin orthogonality must be replaced by a necessary, though not sufficient,
condition for an optimal approximation, a(uh−u,v) = 0 for all v∈TuhMh. A critical point
satisfying this condition may not be a global, or even a local, minimum with regard to the
distance of uh and u in V . Note, however, that the Ritz-Galerkin method is often applied
to a linearization of the global optimization problem, which is generally non-linear. In this
case, an optimal approximation on Vh that satisfies the Galerkin orthogonality generally
is not an optimal approximation to the solution of the global optimization problem.

If the Lie group G in equation (4.1a) and its group action on x0 are translational,
then the manifold Mh is a linear subspace of V , and the observations with regard to the
approximation in the Ritz-Galerkin method apply, as TuhMh =Mh if Mh≤V .

6 A LogFE beam formulation

In this section, we illustrate how the Logarithmic finite element method can be used
to formulate the kinematics of a prismatic beam in n dimensions, n∈{2,3}.

6.1 Transformations of Bernoulli and Timoshenko beam elements

The initial configuration of a beam element κ̃e0 is given as an element of the discretized
constraint manifold of the element, C̃eh. It consists of the positions x0(ξ) of the centerline
of the beam, possibly endowed with the orientations of the cross-section at each point
of the centerline. The orientation is given as an element θ0(ξ) of the special orthogonal
group SO (n,R). For Bernoulli kinematics, only the positions of the centerline and their
derivatives are being considered. For Timoshenko kinematics, a transformation χe(ξ) (see
section 4.1) of θ0(ξ) may need to include a projection onto SO (n,R), possibly as part of
the group action σG of G on κ̃e0, in order to ensure that the resulting orientation θτ(ξ)
lies in SO (n,R).

A salient feature of the Logarithmic finite element method, as applied to beam models,
is that the rotational degrees of freedom impact on the translational field values, i.e.
the displacement of the centerline of the beam. Translational degrees of freedom do
not impact on the rotational field values, i.e. the orientation of the cross-sections along
the centerline. Careful construction of the Lie algebra g, as well as of the scalar shape
functions N(ξ), is essential in order to restrict the interaction of the rotational and the
translational component of a transformation to the interior of the finite elements, while
ensuring the separation of the impact of both types of degrees of freedom at the nodes,
i.e. at the border of the finite elements [12].
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6.2 Constructing the Lie algebra

The Lie algebra g that we will use to construct the transformation function χe of a
beam model based on the Logarithmic finite element method is isomorphic to a subgroup
of the Lie algebra gl(3n+1,R) =L

(
GL(3n+1,R)

)
. However, if we would directly use the

multiplicative operation of the general linear group, we would end up with calculations
involving (3n+1)2 scalar elements for each interpolation point of the finite element model.
Thus, we will construct the Lie algebra g as the composition of direct and semidirect
products of smaller and well-known Lie algebras (see section 3.2).

The basic rotational component of the Lie algebra g is given by r(n) = L
(
R (n)

)
:=

so(n,R)⊕gl(1,R). R (n) := SO (n,R)⊗GL(1,R)+ =
〈
expr(n)

〉
. 4 This component of g

governs rotations and dilatations of the centerline and rotations of the cross-sections. For
n= 2, r(n)∼= gl(1,C) =L

(
GL(1,C)

)
. The embedding of r(3) into gl(3,R) is given by

ι1 : r(n) ↪→ gl(n,R) ,
(
(r1,r2,r3) ,s

)
7→

 s −r3 r2

r3 s −r1

−r2 r1 s

 (6.1)

The Lie bracket on r(3), the exponential function expR(3), and the product operation on
the associated Lie group R (3) can be derived from the product operation on GL(3,R).
The group action of R (3) on sets such as R3 and M3(R) can be derived from the respective
group action of GL(3,R).

The basic translational element of g is given by the translational Lie algebra t(n,R),
which is isomorphic to Rn as an additive group.

We now construct the component of g that governs the rotations and translations
related to one node of beam element. The Lie bracket of elements of the standard semidi-
rect product t(n)oβ r(n), β(b,t) = τb(t) = bt, with bt given by the matrix multiplication,
would not generally vanish even if the Lie bracket of their components in r(n) vanishes.
We therefore construct a direct product s(n) := t(n)⊕ r(n), which, as a subalgebra of
gl(2n+1,R), is given by the embedding

ι2 : t(n)⊕ r(n) ↪→ gl(2n+1,R) , (t,r) 7→

r −r t
0 0 t
0 0 0

 . (6.2)

The Lie algebra s(n) is closed under the Lie bracket, i.e.
[
s(n) ,s(n)

]
⊆ s(n). The Lie

bracket of this subgroup vanishes if, and only if, the Lie bracket of the canonical projec-

4GL(1,R)
+

consists of the 1×1 real matrices with positive determinant and is isomorphic to R+.
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tions of the elements onto r(t) vanishes:
r −r t

0 0 t
0 0 0

 ,
r′ −r′ t′

0 0 t′

0 0 0


=

[r,r′] − [r,r′] 0
0 0 0
0 0 0

= ι2

((
0,
[
r,r′
]))

.5 (6.3)

Finally, in order to combine the deformations related to the respective nodes of the
beam element, we construct the Lie algebra g := q(n) as a subalgebra of gl(3n+1,R)
based on the embedding

ι3 : s(n)×s(n) ↪→ gl(3n+1,R) ,
(
(t1,r1) ,(t2,r2)

)
7→


r̄ −r1 −r2 t̄
0 0 0 t1
0 0 0 t2
0 0 0 0

 , (6.4)

with r̄ := r1 +r2, t̄ := t1 +t2. The Lie bracket on the subspace resulting from the embedding
ι3, inherited from gl(3n+1,R), is given as

r̄ −r1 −r2 t̄
0 0 0 t1
0 0 0 t2
0 0 0 0

 ,

r̄′ −r′1 −r′2 t̄′

0 0 0 t′1
0 0 0 t′2
0 0 0 0


=

=


[r̄, r̄′] −r̄r′1 + r̄′r1 −r̄r′2 + r̄′r2 r̄t̄′− r̄′t̄+∑2

k=1

(
−rkt′k +r′ktk

)
0 0 0 0
0 0 0 0
0 0 0 0

 . (6.5)

The Lie bracket of elements of this subspace does not identically vanish, and the subspace
is not closed under the Lie bracket. However, each subspace Vs(n) of the Lie algebra q(n),
when endowed with the Lie bracket on q(n), is a subalgebra of q(n), i.e. it is closed under
the Lie bracket on q(n).

The non-commutativity of elements of q(n) outside of the subalgebras s(n) induces a
strong coupling between the rotational and the translational component of the transfor-
mation. At the nodes, given appropriate shape functions, X(ξ), and its derivatives with
regard to ξ, up to the required order, lie in s(n), ensuring the independence of rotations
and translations with regard to those nodal degrees of freedom of the beam element that
may be associated with global degrees of freedom of the finite element system.

5For the standard semidirect product, the Lie bracket, as an operation on gl(n+1,R), would read as[(
r t
0 0

)
,

(
r′ t′

0 0

)]
=

([
r,r′
]

rt′−r′t
0 0

)
.
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6.3 The Lie group and its action on the initial configuration

The exponential function, on the subspace of gl(3n+1,R), is given by

exp


r̄ −r1 −r2 t̄
0 0 0 t1
0 0 0 t2
0 0 0 0

=


er̄ −ζ1(r̄)r1 −ζ1(r̄)r2 ζ1(r̄) t̄−ζ2(r̄)

2∑
k=1

rktk

0 In 0 t1
0 0 In t2
0 0 0 1

 , (6.6a)

with

ζm :x 7→
∞∑
k=0

1

(k+m)!
xk =

ex−∑m−1
k=0

1
k!
xk

xm
. (6.6b)

Thus, er̄ ∈R (n) = SO (n,R)⊗GL(1,R)+ is the only power series that must be evaluated
in order to calculate the exponential on q(n). We recall that the isomorphism of the Lie
algebra g to a subalgebra of gl(3n+1,R) ensures that operations on g can be derived from
the matrix multiplication on M3n+1 (R), and that actual calculations can be performed
using these operations, without involving multiplications on M3n+1 (R).

Given the spatial positions of the nodes of the beam element in the initial configuration
as x1

0 and x2
0, the group action on the initial configuration κ̃0 is given by

σg(ξ) : {κ̃0}→Q̃,
(
ξ,(x0,θ0)

)
7→
(
ξ,

(
π1 ◦

(
ϕ◦g(ξ)

)(
x0,x

1
0,x

2
0,1
)T

,π2

(
er̄θ0

)))
,6 (6.7)

with ϕ ◦ g(ξ) = ϕ ◦ exp
(
X(ξ)

)
= exp

(
ι3 ◦X(ξ)

)
. In the expression er̄, we assume that

X(ξ) =
(
(t1,r1) ,(t2,r2)

)
∈ s(n)× s(n). The calculation of the element X(ξ) of the Lie

algebra g is given in equation (4.1c). π1 projects a vector in R3n+1 onto its n leading
dimensions, π2 projects an element of R(n) onto SO (n,R). Figure 1 shows the deformation
of the initial configuration of a beam as a result of the group action of exp

(
sX(ξ)

)
, as

the value of s∈R increases linearly.
Results of the approximation of the deformation of a beam element endowed with

Bernoulli kinematics for different Dirichlet and Neumann boundary conditions are pre-
sented in [12] and show good agreement with reference solutions based on the standard
Ritz-Galerkin method. The results of a Timoshenko beam formulation, while satisfactory
for coarse discretizations, indicate the need for a co-rotational formulation in order to
ensure convergence of the results with mesh refinement [13].

7 Conclusion

The Logarithmic finite element method, which extends the Ritz-Galerkin method from
a linear subspace of the exact solution space to a non-linear manifold, provides a novel
approach to the formulation of finite elements.

6For brevity, the description of the map refers to the single material points, rather than to the config-
uration as a whole.
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Figure 1: Transformation of the initial configuration κ̃0 : [0,1]→R2, ξ 7→ (ξ,0), of a beam
by exp

(
sX(ξ)

)
, s∈R, X(ξ)∈ g. The figures depict the current configurations and the

orbits x(ξ,s) of points on the neutral axis of the beam, as the value of s increases linearly.

Beam elements can be formulated based on matrix Lie algebras, and the product
operations on the Lie algebra and the associated Lie group can be derived from the matrix
multiplication. However, careful construction of the required Lie algebra is essential in
order to allow for a coupling of the components of the deformation in the interior of the
element, as well as for a separation of the impact of the degrees of freedom at the nodes.

The Logarithmic finite element method offers a new approach to the construction of
finite element formulations for various structural elements. While the flexibility provided
by opening up the approximation space to a non-linear manifold of the exact solution
space offers new possibilities, actual finite element formulations must preserve those char-
acteristics of the standard Ritz-Galerkin method that enable the smooth integration of
different finite elements into a global finite element system.
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