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Abstract 

Hydrodynamic loads acting on a cylindrical body   moving inside a supercavity are investigated 

using both experimental and theoretical methods. Experimental studies of supercavitating models 

moving at speeds in the range from 400 m/s to 1000 m/s revealed a regime of bouncing motion, 

in which the rear part of an axisymmetric body periodically bounces against the free boundaries 

of the supercavity. The hydrodynamic force generated by the impacts and the behaviour of the 

cavity surface are of main concern in this paper. Analysis is performed in the approximation of 

two-dimensional potential flow of an ideal and incompressible liquid with negligible surface 

tension effects. The primary interest of the study is to investigate the effects of the cavity and 

body shapes on the added mass and the velocity distribution along the cavity surface 

immediately after an impact. The impulsive motion of an arc-shaped body inside a cylindrical 

cavity is studied based on the integral hodograph method, which makes it possible to derive 

analytic expressions for the flow potential and for the complex velocity in an auxiliary parameter 

plane and obtain a solution of the problem in parametric form. The problem is reduced to a 

system of two integro-differential equations in the unknowns velocity magnitude on the cavity 

surface and the angle between the velocity vector and the cavity boundary. These equations are 

solved numerically using the method of successive approximations. The obtained results 

revealed that the added mass of an arc impacting a cylindrical cavity depends heavily on its 

angle. As the angle tends to zero or the radius of the cavity tends to infinity, the obtained solution 

tends to that corresponding to a plate impacting a flat free surface. 

 

1. Introduction 

High-speed motion in water is known to be most efficient in the regime of developed cavitation. 

In the supercavitation regime, the formation of a developed cavity downstream of the cavitator is 

possible, this allowing the moving body to diminish or fully eliminate its contact with the water 

downstream of the cavitator. Because of this, there is little, if any, friction drag on the body 

surface covered by the cavity. In this case, the moving model experiences only hydrodynamic 

drag on the cavitator  [1, 2, 3].  

     The motion of a high-speed supercavitating vehicle (HSSV) is instable in nature because of a 

torque produced by the hydrodynamic drag acting on the cavitator and the inertia force acting on 

the body further downstream. Besides, no buoyancy force acts on the vehicle inside the 

supercavity, and its weight is compensated by the hydrodynamic forces. This type of motion faces 

some challenges to control the stability of the motion. Experimental studies of supercavitating 

models moving at speeds in the range from 400 m/s to 1000 m/s, carried out at IHM, revealed a 

regime of bouncing motion, in which the rear part of an axisymmetric model periodically bounces 

against the boundaries of the supercavity. The interaction between the model and the cavity 

boundaries in bouncing motion is similar to water impacts. It is shown that the impact loads can lead 

to loss of the stability of the supercavitation motion and the structural stability of the model [4, 5, 6]. 
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     As known from ship hydrodynamics [7, 8], planing takes place if the Froude number exceeds 

a certain critical value 

,3
3


Qg

V
Fr  

where V is the speed,  g is the gravitational acceleration, and  Q is the water displacement. In this 

case, the hydrodynamic lift accounts for more than 95%, while the contribution of the 

hydrostatic lift diminishes to 4%. 

     As the speed increases, planning inevitably changes to bouncing planing (Fr >> 3), in which 

the hull–liquid interaction is of impact character. The bouncing motion of suparcavitating objects 

inside the supercavity differs essentially from the motion of planing boats over a water surface.  

HSSVs execute periodic oscillations about the center of gravity, in which the stern bounces 

between the surrounding supercavity walls. Impacts with the walls at a speed of about 1,000 m/s 

may result in loss of stability and destroy the vehicle [5]. With a further velocity increase up to 

1500 m/s, the density of saturated vapour inside the supercavity  = 0.02 kg/m3 at the 

temperature, t  22⁰C, becomes sufficient to produce an aerodynamic head pressure of 0.0225 

MPa to support the HSSV without any contact with the water [7]   

 

1.1 Experimental studies of supercavitating objects. 

     The bouncing motion of models was found out in the stability study of the inertial 

supercavitating motion of axisymmetric objects conducted as part of the program of 

experimental investigations at the Institute of Hydromechanics of the National Academy of 

Sciences of Ukraine [2, 4, 5, 9]. A schematic of the experimental setup equipped with a 

photorecording and speed measurement system is shown in Fig. 1.  

 

 
Figure 1. Launching tank schematic. 

 

An electrochemical catapult 2 is installed at the head of a launching tank 1 of length 35 m. 

The catapult decomposes water into hydrogen and oxygen and uses the energy released in the 

burning of their mixture for launching models at speeds up to 1,550 m/s. At the end of the 

launching tank, models were caught with a catcher 4. The supercavitating flow pattern was 

recorded through twin glass windows 5 by photo TV cameras 6 using a pulse lighting system 7, 

8, 9 with an exposure time from 210 – 6 s. The model speed was measured with contact sensors 

11 - 14, inertia sensors 18, pulse shapers 15, and speed recorders 16. 
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The experiments were made with models of length, L, from 83 mm to 150 mm and diameter, 

D, from 7 mm to 10 mm with a cavitator diameter, dn, from 1 mm to 1.5 mm. The model speed 

was from 880 m/s to 903 m/s. 

 

 
 

Figure 2. a)  Supercavitating model in the supercavity at the instant of a bounce against the upper 

boundary of the cavity: V = 910 m/s, exposure time 210-6 s, L = 150 mm; D = 10 mm, dn = 

1.2 mm; b) a supercavitating model and a supercavity with bouncing marks: L = 85 mm, D = 

7.7 mm, dn = 0.97 mm, V = 980 m/s; c) supercavity with bouncing marks on the side walls: L = 

150 mm, D = 10 mm, dn = 1.2 mm, V = 900 m/s. 

 

 
 

Figure 3. High-speed photos of the motion of a supercavitating model V = 890 m/s, 
42.4 10t     s, L = 150 mm, D = 10 mm, dn = 1.2 mm. 

a) 

b) 

c) 
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     Figures 2 and 3 show supercavities with marks of model bounces against the walls. The 

photos were taken using a high-speed  X-Stream XS-4 video camera and pulse lighting with a 

pulse width of 210-6 s. As can be seem from Figs. 2 and 3, the marks of model bounces on the 

supercavity walls are 0.2 to 0.3 m apart, which at a model speed of 900 m/s sets up periodic 

bouncing with a frequency of about 1.5 kHz. In the assumption of harmonic oscillations 

tAy Sin  of  amplitude 55.0  DA mm, the g-load on the stern of the model will be 

 

gnAy  322 1045)15002(005.0)2(      (1) 

 

This g-load is comparable with that on a shell in a gun barrel and may deform models, which 

was occasionally observed in the experiments.  

The following conclusions may be drawn from the analysis of the experimental data: 

1. An indispensable condition for bouncing planing is a clearance between the model body 

 and the supercavity boundary,  h > 0.15 D. 

2. A model executed oscillations in the supercavity both in the vertical (Fig. 3) and in the 

 horizontal (Fig. 2) plane passing through the supercavity axis. The position of the 

 oscillation plane seems to depend on the location of the initial disturbance during the exit 

 from the barrel.  

3. The bouncing oscillations of a model in the supercavity are affected by the disturbances 

 of the supercavity boundary caused by the cavitator oscillations in antiphase with the 

 stern oscillations. They come to the stern with delay t  

V

L
t  ,      (2) 

 where L is the model length and V is the model speed. 

 

 
Figure 4. Simulation of the dynamics of a supercavitating model. Instant of a bounce against the 

upper boundary of the supercavity. 

 

Fig. 4 shows a screenshot taken during the simulation of model oscillations in the supercavity, 

The mathematical model of supercavity shape calculation was based on the principle of 

independent cavity section evolution [1]. The simulation accounted for the model and cavity 

shape, the moment of inertia of the model, the position of the center of gravity, and the 

hydrodynamic forces on the cavitator and the stern of the model. If the delay t  with which the 
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disturbances from the cavitator come to the model stern is half the bouncing period, the radial 

displacement of the cavity will be in phase with that of the stern, thus causing a resonance. 

In view of (2), the resonance condition is 

n

T

V

L

2

1

2
 .       (3) 

Hence it follows that the resonance frequency pn  is  

 
L

V
n p

2
 .       (4) 

At  L = 0.150 m and  V = 900 m/s, the resonance frequency is  pn = 3 kHz, which is  2 –3 times 

higher than the frequencies of steady-state bouncing observed in the experiments. The simulation 

has shown that for frequencies pn n  the cavity oscillations will have a stabilizing effect on the 

model oscillations in the cavity. 

     Depending on the model and cavity shape, the interaction of the model stern with the cavity 

boundary at their contact may be of penetration or impact character. In the case where the stern 

of a cylindrical body enters the water at an angle of attack and the area of contact with the water 

increases as the stern submerges, the interaction is of penetration character. Problems of this type 

are considered in [10 - 16]. In the case where the diameters of the body and the cavity are close 

and the shape of the boundaries is congruent over a considerable area, the interaction is of impact 

character, and the forces produced on impact are far greater than those in the case of penetration. 

This problem is considered in the next section.  

 

2. Impulse solution for a circular arc impacting the free surface of the cylindrical cavity 

The pioneering works on water impact problems are based  on von Karman [10] impulse solution 

for a flat plate impacting the flat free surface of the half-space of the liquid. This solution is 

widely used as a model of various water impact problems of shaped bodies for which the actual 

shape is replaced by the equivalent plate.  The von Karman solution implies that the free surface 

remained flat during impact, and the length of the equivalent plate equals to the length between 

intersection points of the actual body and the free surface. Further development of the water 

impact models has been done by Wagner [11] who introduced the correction of the  length of the 

equivalent plate taking into account the free surface rise due to the liquid displacement by the 

body. After Wagner’s correction the length of the plate included the effect of the local free 

surface elevation, and therefore the length itself was the part the solution.  

     Most of studies on water impact problems arising in various marine applications deal with a 

flat free surface. In the present paper we study the effects of the free surface shape on the 

impulse forces generated by the impacts between the  HSSV vehicles and the free surface of the 

cylindrical supercavity.  

     We consider an arc of circle of the radius R and angle 2  which impacts the free surface at 

time 0t  . Immediately after the impact at time 0t  , the velocity of the circular arc is V  

directed downward as shown in figure 5a. The liquid is assumed to be ideal and incompressible, 

and the flow is irrotational. The gravity and surface tension effects are ignored. Based on the 

dynamic equivalence, the body entry speed can be regarded zero and the flow comes from 

y    with velocity V .  We define a Cartesian system xy  with its origin at the bottom of the 

arc.  
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Figure 5. (a) sketch of the impulse impact of the circular arc onto the cylindrical free surface; (b) 

  pane; (c) variation of the function 1tan ( / )n sv v   along the whole boundary of the fluid 

region. The continuous and step changes in   are shown by solid and dashed lines, respectively. 

 

     The problem is to determine the function ( )w z  which conformally maps the physical plane z  

onto the complex-velocity potential region w . We shall use the integral hodograph method [16]. 

In the method a parameter plane   is introduced. Instead of finding ( )w z  directly, two complex 

functions, /dw dz , which is the complex velocity, and the function /dw d  both are sought in 

the   plane in the integral form. Once these two functions are found, the relation between the 

parameter and stationary planes can be determined as follows: 

0 0

( ) O O

dz dw dw
z z d z d

d dzd

 

  


     ,            (5)  

where Oz  is the position of point O.  

     Based on the method of Chaplygin (see §5 of Chapter 1 in Gurevich (1965)) we choose the 

first quadrant of the  plane shown in figure 1b as the parameter region which corresponds to 

the flow region of 0x   in the physical plane in figure 5a. The functions /dw dz  and /dw d  

conformally map the parameter region onto the regions of the complex velocity and the 

derivative of the complex potential. Based on the theorem of conformal mapping three points in 

the parameter plane can be chosen arbitrary, which are taken as O  (intersection point of the body 

surface and the free surface), D  (a point at infinity) and A (stagnation point at the bottom of the 

arc), as shown in figure 5b. The imaginary axis corresponds to the free surface OC . The interval 

0 a    of the real axis corresponds to the circular arc, and the interval 1a    corresponds 

to the symmetry line AD . The rest of the positive real axis (  1 ) corresponds to the 

symmetry line CD . In order to determine the functions /dw dz  and /dw d  we shall formulate 

appropriate boundary-value problems for each of these functions in the  plane. 

     At this stage it is assumed that the velocity modulus along the free surface, that is along the 

positive part of the imaginary axis, 

( )
dw

v
dz

 , 0 , 0 .     (6) 
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is known. This function will be determined below in the following. In the frame of reference 

attached to the flat plate, the normal velocity component equals zero due to the impermeability 

condition. This means that the argument χ of the complex velocity along the interval 0 a   

of the real axis equals ( )  , where ( )   is the slope of the arc as function of the variable  . 

By using these notations we can write the function  ( )   as follows 

( ), 0 , 0,
( ) arg

/ 2, , 0.

adw

adz

   
 

  

    
   

      
        (7) 

The problem is then to find a function dw dz  in the first quadrant of the parameter plane which 

satisfies the given boundary conditions. The formula 

0 0

1 ln
exp ln ln

dw d i d v i
v d d

dz d d i

    
 

       

 



     
     

     
       (8) 

provides a solution of the mixed boundary-value problem (6) - (7) in the first quadrant of the 

complex   plane. Here, ( )v v    is the velocity magnitude at point C. The argument of 

the complex velocity undergoes a step change at the point a   corresponding to the corner at 

point A in the physical plane, ( ) 0a  . Substituting equation (7) into the first integral in (8) we 

finally obtain an expression for the complex velocity in the  -plane as 

1

2

0

0 0

1 ln
exp ln ln

a
dw a d i d v i

v d d i
dz a d d i

     
  

        





        
        

        
  ,       (9) 

where ( )v v   . It is seen that the complex velocity function has only one zero of order 21  

at point a  .  

 In order to analyse the behaviour of the velocity potential along the free surface, it is 

useful to introduce the unit vectors n and τ which are normal and tangent to the free surface, 

respectively. The normal vector is directed outward from the fluid region while the spatial 

coordinate along the free surface s increases along the free surface with the fluid region taken on 

the left (figure 5). With this notation, 

dsvvdw sn )(  ,       (10) 

where nv  and sv  are the tangential and normal velocity components, respectively. Let θ denote 

the angle between the velocity vector on the free surface and the unit vector τ , )/(tan 1

sn vv ; 

its behaviour along the boundary of the fluid region is shown in figure 2. 

The argument of the derivative of the complex potential, ( ) arg( / )dw d   , can be 

determined on the whole boundary of the flow domain as follows 

0, 0 , 0,

( , ) arg
arg / 2, 0, 0

dw
t dw

d
ds

 

 
  

   
  

             
 

  (11) 

By introducing the continuous function ),( t  



6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) 

 7th European Conference on Computational Fluid Dynamics (ECFD 7)  

June 11- 15, 2018, Glasgow, UK 

 

, 1 , 0,

( ) arg , 0 1, 0,

( ), 0 , 0.

dw

ds

  

    

   

   
 

      
      

    (12) 

The function ( )   increases from (0) / 2    at point O  to ( ) / 2       at point C .  

      The derivative of the potential  can be written in the following integral formula (Semenov & 

Iafrati 2006): 

   2 2 2 2

0 0

1 1
( )exp ln ln ( )

dw d d
K t d d i

d d d

 
      

    

  
          

  
  ,   (13) 

where K is a real factor and ( )


   
 . By substituting (11) and (12) into (13) and evaluating 

the integrals over each step change of the function ( )   at point D ( 1  ), we obtain  

 

 
 2 2

2
2

0

1 1
exp ln

1

dw d
K d

d d


  

  

 
  

  
 ,     (14) 

where ( ) ( ) i      . 

The equations (9) and (14) include two unknown parameters K , a  and v  which are determined 

from the following physical considerations. The velocity magnitude at point D ( 1  ) is chosen 

as the reference velocity, therefore it is  equal to 1 ,  

 
0 0

1 1 1 2 ln
exp ln arctan 1

1 1

a
a d d v

v d d
a d d

 
  

    





  
  

  
  .  (15) 

The length of the circular arc is  

0

a
d s

d R
d

 


 ,       (16) 

1

2

2 2

2 2 2 2 1

0 0 0

1

( 1)

1 1 1 ln
exp ln( ) ln( ) 2 tan

a

ds dz K adw dw

d dzd d v a

d d d v
d d d

d d d

  



   

  
      

      



 




  

 

  
          

  

. (17) 

 

The mass balance between the incoming liquid and that coming into the cavity 

  
( )

0

sin

R

nv ds R

 




 ,  or  
0

sin sin
ds

v d
d

  




 ,    (18) 

where sinnv v    and  
ln

( ) exp
d v

v v d
d



 






 
  

 
 
 . 

 Equations (9) and (14) contain the functions ( )  , ( )v   and ( )  , which have to be 

determined from the kinematic boundary condition on the free surface and the wetted surface of 

the body. 
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Body surface boundary condition: integro-differential equation for function ( )  . 

By integrating (17) along the real axis of the parameter region, we can determine the spatial 

coordinate along the body as a function of the parameter variable   

0

( )
d s

s d
d



 



 .     (19) 

Since the function ( )s   is known on the wetted body surface OA corresponding to the 

interval 0 a  , the function ( )     is determined from the following equation: 

d d d s

d ds d

 

 
 .     (18) 

By using /ds d  from (15), this equation takes the form 

1

2

2 2

2 2 2 2 1

0 0 0

1
[ ( )]

( 1)

1 1 1 ln
exp ln( ) ln( ) 2 tan ,

a

d K a
s

d v a

d d d v
d d d

d d d

 
 

  

  
      

      



 






 

  
          

  

  (19) 

where ( ) / 1 /s d ds R    is the curvature of the circle arc. 

 

Kinematic boundary condition on the cavity surface: integral equation for the function 

ln /d v d . 

During the impulse impact the free surface does not change. The slope of the free surface can be 

obtained using the relation, / ( / ) / ( / )dz d dw d dw dz  , and equations (9) and (14)  

( ) arg arg arg ( ) arg .
i ii i

dz dw dw dw

d d dz dz      

   
    

       
                 

      

 (20) 

 Taking the argument of the complex velocity from (9) at i   and substituting the result into 

(20) we obtain the following integral equation respect the function ln/d d   

1 1

0 0

1 ln 2
ln tan tan ( ) ( ),

d v d
d d

d d a

    
     

      

 

  
    

         (21) 

where ( )   is the velocity angle to the cavity surface is determined from the following 

condition. The velocity generated on the cavity surface during the impulse impact should has its 

direction which is perpendicular to the free surface. This fact follows from Euler equations in  

cases of constant pressure along the free surface. Therefore, the tangential component of the 

velocity remains constant during the impact, cos sinv   , from which the function ( )   can 

be determined 

     1 sin
cos

v


   
  

 
.     (22) 

The impulse force P generating the flow which potential is   can be evaluated using Cauchy -

Lagrange integral 

2( )

L

L

P s ds m LV  


   ,      (23) 



6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) 

 7th European Conference on Computational Fluid Dynamics (ECFD 7)  

June 11- 15, 2018, Glasgow, UK 

 

where m  is the coefficient of the added mass of the circular arc, and sinL R   is the 

projection onto the x  axis.  

 

Results and discussion  

The solution procedure of the system of integral equations (19) and (21) is based on the method 

of successive approximations. In discrete form, the solution is sought on a fixed set of points j , 

Mj ,...,1  distributed along the real axis of the parameter region and on a fixed set of points 

j , 1,...,j N  distributed along the imaginary axis as geometric series. In the most 

calculations below, 400N   and 200M  . The smallest intervals near the edge of the arc (point 

O) was chosen 5

1 1 0 1 0 10           . Equation (19) converges rapidly requiring few 

iterations, while equation (21) together with (22) take several hundred iterations to reach the 

tolerance 510  . 

 
  a)       b) 

 
   c)      d) 

Figure 6. Velocity distribution along the cylindrical cavity for different angles of the arc: a)  

0.5  ; b)  0.25   ; c)  0.15   and c)  0.1  . 

 

Velocity distributions along the cylindrical cavity are shown in figure 6 for different angles of 

the circular arc. The results are shown in the system of coordinates related to the calm liquid at 

infinity. The thick lines correspond to the arc and velocity vectors are shown by the thin lines 
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perpendicular to the cylindrical cavity shape (inside the circle) and to the circular arc (outside the 

circle). At the edge of the arc the velocity magnitude tends to infinity (these lines were 

shortened), and gradually decrease away from the arc. As the length of the arc increases, the 

minimal velocity at the top of the cavity also increases. It is caused by the larger amount of the 

liquid which the arc push inside the cavity. As the angle of the arc becomes smaller and smaller 

the cavity surface flattener near the arc and the solution gradually tends to that corresponding to 

the plate impacting the flat free surface. 

 
Figure 7. Coefficient of the added mass for the circular arc impacting the cylindrical cavity vs 

angle of the arc. At =0 (solid square) the circular arc becomes the flat plate for which m = π/2.   

 

The coefficient of the added mass versus the arc angle is shown in figure 7. For very small angle 

 , the value of the coefficient tends to / 2  that corresponds to the plate impacting the free 

surface. However, it rapidly decreases for relatively moderate values 0 / 0.1   . Such 

behaviour of the added mass could be explained as the effect of the shape of the body which 

reduce the liquid acceleration near the arc. Similar effect was observed in the paper [15], who 

studied the water entry problem of the circular arc based on the Wagner's approach. For the angle 

0.2 / 0.5    the coefficient of the added mass increases. This may occur due to choice of 

the length sinL R   in (23). Indeed, the length L  is slowly increases as  / 0.5   , while 

the area of liquid displaced by the arc increases proportionally to the length R .  

 

Conclusions.  

The sudden vertical motion of the circular arc impacting the wall of the cylindrical cavity has 

been investigated. The fully nonlinear hydrodynamic problem has been solved through the 

derivation of the flow potential which has been obtained applying the integral hodograph 

method. The problem is reduced to a system of integral and integro-differential equations in 

terms of the slope of the body and velocity magnitude along the free surface after the kinematic 

boundary conditions on the body and free surface are imposed. The numerical results are 

presented over a wide range of the arc angles 0 / 0.5    in terms of the velocity distribution 

along the free surface. The non monotonic behaviour of the added mass coefficient, m , for 

different arc angles is revealed. For very small angles of the arc,  , the coefficient of the added 

mass tends to / 2  that corresponds to the added mass coefficient of the flat plat impacting the 

flat free surface. However, small change of the angle   causes the significant decrease of m  to 
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the value about  0.5m  . The present study makes the possibility to evaluate impulse forces 

acting on the vehicles moving at high speeds  inside the supercavity, that is necessary to predict 

overall dynamics of high-speed supercavitating vehicles. 

     In actual practice, the following should be taken into account: the supercavity is filled with 

saturated water vapor, whose density is lower than the air density by a factor of several tens; the 

water vapor flows about the model body at a supersonic velocity  with a Mach number of about 

3; the supercavity boundary is not smooth  and has a spray structure typical of high-velocity jet 

flows. However, these neglected factors reduce dynamic loads. So the estimation of the 

hydrodynamic forces by the above-described kinematic model will give maximum possible 

values, which may be used in assessing the required HSSV strength and motion stability. It 

should be noted that the body of a supercavitating HSSV interacts with the supercavity 

boundaries that it forms itself using its cavitator. This factor should be used to form a cavity 

boundary with properties and a shape that offer reduced impact loads.  
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