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Abstract. This paper is devoted to development of nonreflecting boundary conditions
for finite-difference schemes in multi-dimensional gas dynamics. Such boundary condi-
tions are local and do not require large computational resources. The distinction between
continuous and discrete formulations is taken into account. Examples of schemes and
boundary conditions are shown, which cause small wave reflections for any angle of inci-
dence. Various numerical tests—both linear and nonlinear—are presented.

1 INTRODUCTION

Modeling external problems of subsonic gas dynamics or aeroacoustics faces spurious
wave reflections from artificial boundaries. As well known, the multi-dimensional wave
equation does not permit local boundary conditions to be transparent for any oblique
waves [1]. In fluid dynamics and other fields, alternative techniques are applied such as
nonlocal boundary conditions and Perfectly Matched Layers (PML), see, e.g., [2].

In this study a new type of local boundary conditions is developed based on the dis-
tinction between continuous and discrete models of fluid dynamics. The latter usually
possess additional (singular) modes and require a greater number of equations on bound-
aries than the continuous do. A typical example is so-called sawtooth spurious waves
which are sometimes able to completely destroy the numerical solution.

Henceforth we will examine multidimensional finite-difference schemes as a self-sufficient
subject that could not be reduced neither to 1D systems nor to multi-D continuous models.
The first do not encounter main difficulties, and the last do not exhibit interesting features.
At the same time, the basics will be seen at the level of linearized constant-coefficient
equations. This makes applicable simple mathematical tools such as the Fourier–Laplace
transform.
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Figure 1: Schematic of wave reflection from the right-hand boundary

The bibliography on discrete nonreflecting conditions is not very extensive. The type of
boundary conditions considered here is known, e.g., from [3]–[7]. They are incompatible
with the differential systems because of excessive number of equations and, on the other
hand, suitable for a chosen finite-difference approximation. Despite the success gained,
detailed research of multidimensional numerical models still lacks.

We will analyze and systematize numerical schemes and boundary conditions. There
exist formulations resulting in small wave reflections for any angle of incidence.

The theory presented is illustrated with numerical examples both linear and nonlinear,
starting from 3-point centered-difference schemes and arriving in high-order 3- and 5-point
upwind schemes of EBR (Edge Based Reconstruction) type on unstructured meshes [8].

2 BOUNDARY CONDITIONS FOR DIFFERENTIAL HYPERBOLIC
EQUATIONS

2.1 Wave equation

Consider the 2D wave equation in a rectangular domain

∂2p

∂t2
−
(
∂2p

∂x2
+
∂2p

∂y2

)
= 0, 0 < x < X, 0 < y < Y, t > 0. (1)

The governing equation is equivalent to the system of acoustic equations

∂u

∂t
+
∂p

∂x
= 0,

∂v

∂t
+
∂p

∂y
= 0,

∂p

∂t
+
∂u

∂x
+
∂v

∂y
= 0. (2)

In the 2D case, for the wave equation nonlocal nonreflecting boundary conditions are
only available. Any local constant-coefficient boundary condition causes reflection of
oblique waves (Fig. 1) with a uniquely determined ratio between amplitudes of the incident
and the reflected waves.

As an example, set the 1D nonreflecting right-hand boundary condition

(∂p/∂t+ ∂p/∂x)|x=X = 0. (3)
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A particular solution to (1) coupled with (3) in the form of plane normal-mode superpo-
sition reads

p(x, y, t; ω, θ) = exp{iωt− iωx cos θ − iωy sin θ}
+R exp{iωt+ iωx cos θ − iωy sin θ} , R = − tan2(θ/2) = O(s2) .

(4)

Here R is the reflection coefficient, θ the angle of incidence, and s = sin θ.

2.2 Linearized 2D Euler equations

Now turn to the inviscid gas dynamics. Consider the 2D Euler equations in their
linearized form

∂U

∂t
+ Cx

∂U

∂x
+ Cy

∂U

∂y
= 0 (5)

expressed in terms of the vector of perturbations U = ( ρ′ u′ v′ p′ )T with constant matrices

Cx =


u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 ρc2 0 u

 , Cy =


v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 ρc2 v

 .

The general solution to (5) is expanded over normal modes of the four types

U(x, y, t; ω, `) =
4∑

j=1

ajÛj exp{iωt− ikjx− i`y} .

The right-going (j = 1) and the left-going (j = 2) acoustic waves, the entropy (j = 3),
and the vorticity (j = 4) waves are associated with the following wavenumbers

k1 =
ω

c+u
, k2 = − ω

c−u
, k3 = k4 =

ω − vl
u

,

with acoustic-mode wavenumbers k1 and k2 shown for the 1D case, and eigenvectors

(
Û1 Û2 Û3 Û4

)
=


ρ ρ ρ 0

c cos θ1 c cos θ2 0 −c tan θ3

c sin θ1 c sin θ2 0 c
ρc2 ρc2 0 0

 ,

tan θj = `/kj , j = 1, 2, 3.

For more detail see, e.g., [2].
Consider the right-hand (x = X) or the left-hand (x = 0) boundary and a boundary

condition of general form
LU |x=xΓ

= 0. (6)

From now, we deal with a subsonic rightward-directed flow

0 < u < c .
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When so, the left acoustic wave (k2) propagates leftward as the rest do rightward. Con-
sequently, on the left boundary the right-going acoustic (k1), the entropy (k3), and the
vorticity (k4) modes are incoming, when the left acoustic (k2) is the only outgoing. On
the right boundary the waves exchange their properties. Recall that the Euler equations
need 3 boundary conditions on the left and 1 condition on the right.

Let L in (6) be a linear constant-coefficient operator with its Fourier counterpart

L̂(k, `, ω). In [6] the amplitudes aj are shown to satisfy the system of linear algebraic
equations

4∑
j=1

V̂jaj = 0 , where V̂j = L̂(kj , `, ω) Ûj , j = 1, 2, 3, 4.

Nonreflecting boundary conditions, by their definition, impose zero amplitudes aj = 0
to incoming waves and arbitrary aj to outgoing waves. In [6] the criterion of nonre-
flecting boundary condition for the general hyperbolic system is formulated in terms of
requirements to matrix columns, i.e., to operator L.
On the right-hand boundary (subsonic outflow) this reads

V̂1 = V̂3 = V̂4 = 0 , V̂2 6= 0 , ∀ω, `. (7)

On the left-hand boundary (subsonic inflow):

V̂2 = 0, V̂1 , V̂3 , V̂4 are linearly independent, ∀ω, `. (8)

In the case of 1D Euler equations these criteria can be easily fulfilled in various ways
(see, e.g., [6]). However, in 2D any local boundary conditions does reflect acoustic waves
to a certain extent. However, there exist boundary conditions for which all entropy and
vorticity waves leave the domain with no trace [9].

When switching from linear to nonlinear models, any completely differential (without
algebraic terms) boundary conditions can easily be transformed into expressions for the
basic variables. We use the following rules:

- in coefficients background parameters are replaced with their local values;

- basic variables are differentiated instead of their perturbations.

The procedure stated above results in exact boundary conditions for the Euler equa-
tions in the 1D nonlinear case, as proved in [10] and, more generally, in [6].

3 FINITE-DIFFERENCE GASDYNAMIC SCHEMES

Discrete models considerably differ from continuous ones by the mechanism of wave
reflections. In the linear case, this can be explained by the presence of additional modes.
As a result, such a numerical scheme requires a greater number of boundary conditions
than the initial differential system does. We will construct overdetermined continuous
formulations and then discretize them. In some cases this eliminates strong reflections of
oblique acoustic waves.

4



Ilya V. Abalakin and Ludwig W. Dorodnicyn

3.1 Schemes for the advection equation

The distinction between differential and finite-difference problems is well seen on the
case of three-point centered-difference scheme for the 1D advection equation

∂u/∂t+ ∂u/∂x = 0 .

It is replaced, on a uniform mesh of size h, with approximation

duj
dt

+
uj+1 − uj−1

2h
= 0 . (9)

In a numerical algorithm the time derivative d/dt is implemented by using some Runge–
Kutta method.

A normal-mode solution to (9) consists of two parts—the “physical” wave (regular
mode) which is similar to the solution of differential equation, and the spurious grid-to-
grid (sawtooth) oscillation (singular mode), as below:

u(xj, t) = exp{iωt− ikxj}+R (−1)j exp{iωt+ ikxj} ,
k = k(ω, h) = arcsin(ωh)/h ≈ ω.

Eq. (9) requires boundary conditions at the left edge of the segment and, unlike the con-
tinuous advection equation, at the right edge. Here the equation with one-sided difference
is commonly used that specifies the reflection coefficient R as

duN
dt

+
uN − uN−1

h
= 0, R ≈ −ω

2h2

4
.

Yet another, and little more complex, example is the centered-difference scheme with
diffusion

duj
dt

+
uj+1 − uj−1

2h
= µ

uj−1 − 2uj + uj+1

h2
. (10)

As its simplified version having the same number of modes and boundary conditions may
serve the differential convection-diffusion equation

∂u

∂t
+
∂u

∂x
= µ

∂2u

∂x2
. (11)

The general normal-mode solution to both Eqs. (10) and (11) has the form

u(x, t) = a1 exp{iωt− ik1x}+ a2 exp{iωt− ik2x} .

In the case of convection-diffusion equation (11) the wavenumbers are

k1 =
i

2µ

(
1−

√
1 + 4iµω

)
= ω − iµω2 +O(µ2) ,

k2 =
i

2µ

(
1 +

√
1 + 4iµω

)
=
i

µ
− ω +O(µ) .
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The singular mode k2 is in fact a rapidly dumping exponent.
Discrete scheme (10) has wavenumbers k1 and k2 expressed below:

exp{ik1h} =
1

1+ε

(
ε+ ir +

√
1 + 2irε− r2

)
, k1 = ω − iµω2 +O(µ2 + h2) ,

exp{ik2h} =
1

1+ε

(
ε+ ir −

√
1 + 2irε− r2

)
, k2 =

i

h
ln
ε+1

ε−1
− ω +O(µ) , if ε > 1,

k2 =
π

h
+
i

h
ln

1+ε

1−ε
− ω +O(µ) , if ε < 1; ε ≡ 2µ

h
, r ≡ ωh .

The singular mode (k2) of (10) becomes similar to that of (11) when h → 0 with µ kept
unchanged and it approaches its properties of centered-difference scheme (9) when µ� h.

Finally, consider a scheme with upwind differences used in [8]. The simplest case is the
3-point one-sided scheme which on a uniform mesh has the form

duj
dt

+
1

2h

(
3uj − 4uj−1 + uj−2

)
= 0. (12)

and possesses accuracy of O(h2). This governing equation requires two left boundary
conditions and no additional equation on the right.

Scheme (12) has two wavenumbers k1 and k2, where

exp{ik1h} = 2−
√

1− 2iωh , k1 = ω − 1

3
ω3h2 +O(h3) ,

exp{ik2h} = 2 +
√

1− 2iωh , k2 = − i
h

ln 3− 1

3
ω +O(h) .

The singular wave is fast-dumping.

3.2 Three-point schemes for the 2D Euler equations

We will deal with a rectangular uniform grid {(xl, ym)} for mesh sizes ∆x and ∆y,
where linearized Euler equations (5) are approximated on stencils having three points at
each coordinate. First consider the centered-difference scheme, like (9),

dUlm

dt
+ Cx

Ul+1,m − Ul−1,m

2 ∆x
+ Cy

Ul,m+1 − Ul,m−1

2 ∆y
= 0 . (13)

Another approximation to Euler equations (5) consists of introducing diffusion into
centered-difference scheme (13), see (10), in the following manner:

dUlm

dt
+ Cx

Ul+1,m − Ul−1,m

2 ∆x
+ Cy

Ul,m+1 − Ul,m−1

2 ∆y

= µ

(
Ul−1,m − 2Ulm + Ul+1,m

∆x2
+
Ul,m−1 − 2Ulm + Ul,m+1

∆y2

)
. (14)

This is a three-point example of the wide-stencil scheme family from [11, 12] with filtering
of the basic variables.

6



Ilya V. Abalakin and Ludwig W. Dorodnicyn

A model simpler than the previous is the continuous Euler equations with artificial
isotropic diffusion, like (11),

∂U

∂t
+ Cx

∂U

∂x
+ Cy

∂U

∂y
= µ

(
∂2U

∂x2
+
∂2U

∂y2

)
. (15)

The discretization with respect to y is not important in the further analysis of wave
reflections from the left and the right boundaries x = xΓ. In Eqs. (13)–(15) first and
second y-differences should be replaced by differential operators. Only the mesh in x with
size ∆x = h will be taken into account.

A solution to finite-difference schemes (13)–(15) is expanded over the modes

U(x, y, t; ω, `) = exp{iωt− i`y}
[ 4∑

j=1

ajÛj exp{−ikjx}+
4∑

j=1

aSj Û
S
j exp{−ikSj x}

]
.

The first four—physical—modes are similar to the correspondent modes featured in con-
tinuous Euler equations (5), though they have dissipation and dispersion like in scalar

schemes (9)–(11). The rest—singular modes (ÛS
j , k

S
j )—are strongly model-dependent.

In the case of centered-difference scheme (13) the following relationships take place,

ÛS
j = Ûj , k

S
j = ±π/h− kj , j = 1, 2, 3, 4.

For diffusive Euler equations (15) the expressions are rather complex. When µ → 0
we obtain the eigenvectors tending to their values from the 1D Euler equations and the
asymptotics of wavenumbers,

(
Û1 Û2 Û3 Û4

)
=


ρ ρ ρ 0
c −c 0 0
0 0 0 c
ρc2 ρc2 0 0

 ,

kSj = icj/µ , cj ≡ ω/kj , j = 1, 2, 3, 4.

Finite-difference scheme (14) does permit analytic formulas for Fourier-analysis, how-
ever, very large ones. As a general conclusion, the mode properties are somewhat inter-
mediate between those for systems (13) and (15), as well as in the scalar case (10).

Boundary condition (6) specify the following equation system for amplitudes

4∑
j=1

V̂jaj = −
4∑

j=1

V̂ S
j a

S
j , where V̂j = L̂(kj , `, ω) Ûj , V̂ S

j = L̂(kSj , `, ω) ÛS
j . (16)

For all the models (13)–(15), modes k1, k3, k4, and kS2 propagate rightward, while
modes k2, kS1 , kS3 , and kS4 do leftward, so four boundary equations are needed both on the
left and on the right.

We will mean the following concept of nonreflecting boundary conditions for discrete
schemes.
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- Any kind of incoming waves should not appear if no outgoing wave is present.

- Outgoing regular waves should not generate incoming regular waves.

This results in the requirements to the solution of Eq. (16):

aj = 0 for incoming modes, if ∀ aSl ≡ 0,
aj arbitrary for outgoing modes.

The criterion of nonreflecting condition at the right-hand boundary reads

V̂2, V̂
S

1 , V̂
S

3 , V̂
S

4 are linearly independent,

V̂1 = β11V̂
S

1 + β13V̂
S

3 + β14V̂
S

4 ,

V̂3 = β31V̂
S

1 + β33V̂
S

3 + β34V̂
S

4 ,

V̂4 = β41V̂
S

1 + β43V̂
S

3 + β44V̂
S

4 .

(17)

The criterion for the left-hand boundary reads

V̂1, V̂3, V̂4, V̂
S

2 are linearly independent, V̂2 = βV̂ S
2 . (18)

Above, all the coefficients β may be arbitrary functions of wave parameters. Comparison
with the continuous case—(17) vs. (7) and (18) vs. (8)—shows that in both examples the
requirements become less restrictive. Local nonreflecting boundary conditions do exist,
what will be shown later.

At the left boundary, consider the inflow radiation boundary condition [6] which is
nonreflecting for the 1D Euler equations:

dρ′0
dt

+ (u−c) ρ
′
1 − ρ′0
h

= 0,
du′0
dt

+ (u−c) u
′
1 − u′0
h

= 0, (19)

dv′0
dt

+ (u−c) v
′
1 − v′0
h

= 0,
dp′0
dt

+ (u−c) p
′
1 − p′0
h

= 0. (20)

Note that in the continuous case such a system which consists of 4 equations makes the
problem setup overdetermined.

The matrices in Eq. (16) are composed of columns

V̂j = σj Ûj , V̂ S
j = σS

j Ûj , j = 1, 2, 3, 4,

where σj ≈ iω − i (u−c) kj and σS
j ≈ ±2 (u−c)/h . Criterion (18) is fulfilled, where

scaling coefficient β = σS
2 /σ2 and the linear independence is guaranteed because(

V̂1 V̂3 V̂4 V̂ S
2

)
= diag (σ1, σ3, σ4, σ

S
2 )
(
Û1 Û3 Û4 Û2

)
.

However, the left-going physical wave generates a low-amplitude sawtooth oscillation.
System (16) has a particular solution

p′(xj, y, t; ω, `) = exp{iωt− i`y}
(
exp{−ik2xj}+R (−1)j exp{ik2xj}

)
,

R = O(hs2).
(21)
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The outflow radiation condition [6] on the right-hand boundary

dρ′N
dt

+ (u+c)
ρ′N − ρ′N−1

h
= 0,

du′N
dt

+ (u+c)
u′N − u′N−1

h
= 0,

dv′N
dt

+ (u+c)
v′N − v′N−1

h
= 0,

dp′N
dt

+ (u+c)
p′N − p′N−1

h
= 0

behaves in similar manner and satisfies criterion (17).

4 NUMERICAL RESULTS

4.1 Propagation of Gaussian acoustic pulse

Consider the propagation of an initial 2D Gaussian pulse in a uniform immovable fluid
(Benchmark 3 by [13]). The problem is described by linear acoustic equations (2). The
computational domain is square {0 ≤ x ≤ 50 × 0 ≤ y ≤ 50} with the rectangular uniform
mesh of 201× 201 nodes.

The governing numerical scheme has the form

∂U

∂t
+ CxDh

xU + Cy Dh
yU = µFh

xU + µFh
yU , (22)

with vector U = (u v p )T and corresponding matrices Cx and Cy, where

Dh
xu ≡

1

∆x

3∑
l=1

al (uj+l − uj−l) , Fh
xu ≡

1

∆x

3∑
l=0

dl (uj+l + uj−l) ,

and the similar operators are applied with respect to y. Parameters al and dl are taken
from [11].

For time advancing the explicit 5-stage Runge–Kutta scheme RKo5s by [4] is used.
Three formulations of schemes with boundary conditions were tested.
Case (i). Governing scheme (22) with switched off filtering: µ = 0 . Radiation bound-

ary conditions of type (20) are set up at all the four sides of the rectangular domain,
e.g.,

(∂u/∂t+ ∂u/∂x)|x=X = 0, (∂p/∂t+ ∂p/∂x)|x=X = 0

specified on the right boundary. The spatial derivatives are replaced by biased differences
from [7] at 3 rows of near-boundary nodes.

Case (ii). The first equation of governing system (2) and a radiation condition for p,
i.e.,

(∂u/∂t+ ∂p/∂x)|x=X = 0, (∂p/∂t+ ∂p/∂x)|x=X = 0,

both approximated with biased differences. In the continuous case the problem is well-
posed so far as only the second equation is independent.

Case (iii). Governing scheme (22) with filters µ. Radiation boundary conditions like in
Case (i).

9
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Figure 2: Waves from the initial pulse; top—cases (i) and (ii), bottom—Case (iii)

5 CONCLUSIONS

- For centered-difference schemes, there exist boundary conditions which yield weak
reflection of oblique waves with R = O(hs2).

- For different numerical schemes, same types of boundary conditions cause distinct
values of wave reflections.

- The theoretical results in practice can be generalized to more complex models,
including wide stencils, nonuniform meshes, and nonlinearity.
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