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Abstract. The velocity signal of a high quality wall-resolving large eddy simulation
(WRLES) of fully-developed turbulent channel flow at Reτ = 1000 is spatially averaged
over cubic boxes of size corresponding to possible choices for grid-cell size in a wall-modeled
(WM)LES of the same flow. Two box sizes are considered, as well as multiple wall-
normal locations of the center of the box. After applying filtering in time, the generated
velocity signals are used to study algebraic wall models with respect to their ability to
accurately predict the wall shear stress, τ̄w. In particular, models based on the Spalding
and Reichardt laws are examined. The sensitivity of τ̄w with respect to the wall-normal
distance of the velocity sampling point, h, the wall model and its parameters, and also to
the resolution of the WMLES grid is addressed. It is shown that by using wall models with
the parameters calibrated to fit the WRLES mean velocity profiles, the mean of the wall
shear stress can be accurately predicted, however, no improvement for the fluctuations
of this quantity is achieved. To avoid dependence of the mean predicted τ̄w on h, an
integrated formulation of algebraic wall models is proposed and applied to Reichardt law,
leading to improved results. Finally, an idea is described and examined to increase the
correlation between the predicted τ̄w and reference wall shear stress through dynamically
adjusting the wall model parameters. To facilitate similar studies, the generated datasets
for a-priori study of WMLES are made publicly available.

1 INTRODUCTION

The essential requirement for wall-resolving large eddy simulation (WRLES) is to re-
solve structures of the order of the local viscous length scale δν , where δν = ν/uτ , in the
turbulent boundary layer (TBL). Here, ν is the fluid kinematic viscosity and uτ denotes
the wall friction velocity defined as uτ =

√
τw/ρ, with τw and ρ being magnitude of the

wall shear stress and fluid density, respectively. This requirement results in excessive
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growth of the number of grid cells with Reynolds (Re-)number, [5, 6, 18], which is the
main barrier to applying WRLES to many real-life applications, [21]. In contrast, the
requirement in the wall-modeled (WM)LES approach is to only directly resolve the flow
structures in the outer part of the TBL, which scale with δ � δν . Consequently, the
required number of grid cells is reduced, see [5, 6, 20], but the near-wall region in WM-
LES is under-resolved and hence some appropriate type of wall modeling is required to
approximate the uncaptured effects.

There have been various suggestions for wall modeling, see the reviews [15, 14, 10] and
the references therein. In one approach, referred to as wall-stress modeling, a part of the
near-wall modeling is devoted to predicting the correct value of the local wall shear stress,
given information from the outer part of the TBL which is supposed to be sufficiently
resolved. The focus of the present study is on so-called algebraic wall-stress models using
laws of the wall valid for equilibrium TBLs, [16, 8], to make the predictions.

In what is hereafter called a-posteriori WMLES, at each time step, there is a coupling
between the LES solution in the interior computational domain and the wall model which
takes in information from the interior domain and then predicts and imposes a boundary
condition for the LES equations at the wall. In the present study, similar to [3, 4, 7],
the coupling between the flow solver and wall model at the wall is removed leading to a
framework for a-priori WMLES within which the possibility of studying the performance
of the wall model in predicting wall shear stress is provided.

The particular wall models used in the present study are shortly reviewed in Section 2.
To generate velocity samples suitable for the wall model, the velocity field of a high-
quality WRLES of channel flow at Reτ = uτδ/ν = 1000, where δ denotes the channel
half-height, is filtered in both space and time. The details of the procedure are found in
Section 3. Moreover, the reference wall shear stress to which the wall models’ predictions
are compared is introduced. As a main objective of the present study, the sensitivity of the
predicted wall shear stress with respect to different factors is investigated in Section 4.1.
In order to remove the observed dependency of the predictions on the sampling height,
an integrated formulation of algebraic wall models is proposed. In the end, in Section 4.3,
the possibility of using an algebraic wall model with dynamically-adjustable parameters
to enhance capability of predicting fluctuations of wall shear stress is discussed.

2 ALGEBRAIC WALL MODELS

The inner-scaled laws of the wall developed for equilibrium TBLs can be used as al-
gebraic wall models. In their general form, these laws read as, F (q, y+, 〈u〉+) = 0 ,
where, q are the model parameters and taken to be fixed, 〈·〉 denotes the mean value,
〈u〉+ = 〈u〉/〈uτ 〉 and y+ = y〈uτ 〉/ν represent the inner-scaled mean velocity and distance
from the wall, respectively. At any specific point on the wall with coordinates (x, z), the
local mean friction velocity 〈uτ 〉 is defined as

√
〈τw〉/ρ. In WMLES, it is assumed that the

law of the wall also holds for the instantaneous filtered velocity ū sampled at distance y
from the wall. As a result, the associated local instantaneous ūτ (x, z, y, t) is iteratively
predicted from,

F (ūτ , q, y, ū) = 0 . (1)

2
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The two particular wall models considered in Section 4 cover the distance between the
wall up to the wake region (i.e. the end of outer layer) of the TBL, see e.g. [16]. The first
model is proposed by Spalding, [23],

y+ = 〈u〉+ + e−κB

[
eκ〈u〉

+ −
3∑

m=0

(κ〈u〉+)m

m!

]
, (2)

with default parameters κ = 0.4 and B = 5.5. The second one is that of Reichardt [17],

〈u〉+ =
1

κ
ln
(
1 + κy+

)
+ C

[
1− e−

y+

B1 − y+

B1

e
− y+

B2

]
, (3)

with default parameters κ = 0.4, C = 7.8, B1 = 11, and B2 = 3.

3 DATA FOR a-PRIORI WMLES

In order to generate the velocity samples used by the wall model, high quality data
of WRLES of fully-developed turbulent channel flow at nominal Reτ = 1000 are utilized.
The details of the WRLES are summarized in Table 1. Also, the resulting profiles of a
number of velocity statistical moments, which agree very well with the reference DNS data
of [11], are shown in Fig. 1. To perform this simulation, the open-source finite-volume
based library OpenFOAM, see [12] and the references therein, was employed. Nominally
second-order accurate schemes for discretization in both space and time are used with
constant time step size ∆tR = 0.002. Moreover, no explicit subgrid-scale (SGS) modeling
was included in the simulation. For further details, see [19].

Table 1: Details of WRLES of channel flow at target Reτ = 1000. The physical parameters are bulk
velocity Ub = 1 m/s, channel half-height δ = 1 m and ν = 5× 10−5 m2/s, which result in Reτ = 1000.512
according to DNS, [11]. The inner-scaled wall-normal distance of the first off-wall cell center and the cell
size in wall-normal direction at the center of the channel are denoted by ∆y+w and ∆y+c , respectively.

Reτ Resolution Domain Size No. of Cells
∆x+ ∆z+ ∆y+w ∆y+c lx × ly × lz

986 16.6 10 0.445 40 9δ × 2δ × 4δ 543 × 116 × 403

Figure 1: Inner-scaled profile of WRLES mean velocity (a), Reynolds stress (b) and turbulent kinetic
energy (c) compared to the DNS data of [11] (symbols).
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The velocity field of the WRLES is, in the course of simulation, spatially averaged over
the volume of cubic boxes centered around the points with coordinates xM = (xM , h, zM),
where xM and zM are fixed (associated to a point on the wall) and h specifies different
heights from the wall. Due to periodicity, the choice of xM and zM is arbitrary, and is
here chosen to be the centroid of the wall. By filtering in time, in the post-processing
stage, the WMLES velocity signals are generated via,

ū(xM , t) =
1

∆tMVM

∫
∆tM

∫
VM

u(x− xM , t
∗)dx dt∗ , (4)

where, boldface letters represent vectors, ∆tM = Nt∆tR with Nt > 1 specifies time step
size associated with WMLES, and VM = (δ/n)3 is the volume of the cubic boxes which
mimic the WMLES cells. In the present study, two different resolutions n = 20 and 30
are considered. A total of n sampling points xMi

= (xM , hi, zM), where i = 1, 2, · · · , n, is
chosen so that they cover the distance between the wall and the channel half-height δ, i.e.
hi = (2i − 1)δ/(2n). A velocity snapshot of the WRLES with the associated grid along
with the schematic representation of the WMLES cells are illustrated in Fig. 2.

In total, 213 000 time-samples of WRLES velocity u, corresponding to more than 47
flow-through times are uniformly filtered (i.e. averaged with the same weights) to generate
WMLES velocity signals ū. In particular, Nt = ∆tM/∆tR is chosen to be 10, in accordance
with the time step size practically used for a-posteriori WMLES.

Figure 2: Instantaneous velocity field of the WRLES of channel flow at Reτ = 1000 (a), with cells
represented by gray lines. The blue boxes (a,b) schematically show the WMLES cells with volume (δ/n)3

over which the WRLES fields are averaged.

In addition to the WMLES cells for sampling velocity in the interior of the domain,
another box with volume δ/n×2∆yw×δ/n is considered adjacent to the wall with center at
(xM ,∆yw, zM). Since this center is located in the viscous sublayer of the TBL, a reference
wall shear stress associated to the volume can be directly calculated as τwM

= ρνūM/∆yw.
The velocity samples ūM are calculated in the same way as in (4) but employing the volume
δ/n × 2∆yw × δ/n instead. For comparison, the wall shear stress signal from WRLES,
τwR

, is also computed using the WRLES velocity at (xM ,∆yw, zM) filtered in time.
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Table 2: Comparison between reference wall shear stresses.

Wall shear stress n 〈τw〉 ×103 τ ′+w Correlation with τwR

τwR
- 2.560 0.418 1.000

τwM
20 2.573 0.288 0.794

τwM
30 2.579 0.330 0.878

According to the quantitative comparison in Table 2, only τwR
has physically correct

value of normalized fluctuations τ ′+w = sdev(τw)/〈τw〉 which is known to be ≈ 0.4 [1] with
small increase with Re-number, see [13]. Here, sdev(·) represents standard deviation.
When WMLES resolution n increases, both τ ′+w and the correlation between τwM

and
τwR

grow. The latter is clearly observable from the scatter plots in Fig. 3. Also shown
in this figure are the marginal probability density functions (PDF) of τ+

wM
= τwM

/〈τwM
〉

and τ+
wR

= τwR
/〈τwR

〉. According to Alfredsson et al. [2], τ+
wR

signals have log-normal
distribution. The same type of distribution can be also fitted to τ+

wM
, although with

slightly different parameters than those for τ+
wR

.
In order to evaluate the performance of the wall models in Section 4, a reference wall

shear stress is required which is chosen to be τwM
. Taking into account the deviation of

τwM
from the “true” wall shear stress τwR

, it is accepted that even a perfect wall model
is not supposed to predict the physically true values of wall shear stress.

Figure 3: Scatter plot and marginal PDF of τ+wM
and τ+wR

for n = 20 (a) and n = 30 (b). The solid blue
lines represent the log-normal PDFs fitted to the samples. The red dashed lines represent mean values.

4 PERFORMANCE OF ALGEBRAIC WALL MODELS

4.1 Factors influencing the predictions of wall models

Different factors can potentially influence the predictions of the wall shear stress in
wall modeling. In particular, the algebraic wall model and its parameter values, the
wall-normal distance to the velocity sampling point, h, the characteristics of the sampled
streamwise velocity component imported to the wall model, ū, and grid resolution n are
the potentially most influential factors. Here, an attempt is made to assess the influence
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of these factors using the WMLES data of Section 3.
The normalized error in 〈ūτ 〉, predicted by two wall models and different parame-

ter values at different h/δ is shown in Fig. 4(a). This error is defined as, ε[〈ūτ 〉] =
(〈ūτ 〉 − 〈uτM 〉) /〈uτM 〉 where uτM =

√
τwM

/ρ. Independent of the wall model and param-
eters used, sampling from the closest WMLES cell center to the wall results in the largest
magnitude of ε[〈ūτ 〉]. This is in agreement with what is observed in a-posteriori WMLES,
see e.g. [9]. By increasing h/δ, the value of ε[〈ūτ 〉] changes, however, it becomes almost
fixed for h/δ & 0.6 associated with the wake region of the TBL. The latter is due to
the fact that both Spalding and Reichardt wall models are valid up to the end of the
outer layer. A more interesting observation is that below the wake region, the choice
of parameter values can vertically shift the ε[〈ūτ 〉]-h/δ graph. When both the Spalding
and Reichardt laws are used with the parameters calibrated to fit the 〈u〉+-y+ profile of
the WRLES, similar negligible ε[〈ūτ 〉] is observed for sampling velocity from the overlap
region of the TBL, see the red and yellow graphs in Fig. 4(a).

To quantify how sensitive the predicted ūτ are to the variations of the wall model
parameters and sampling velocity ū, local sensitivity analysis, see e.g. [22], is performed
for the wall models (2) and (3). The resulting expression in its general form is written as,

∆ūτ
ūτ0

= χū
∆ū

ū0

+
∑
i=1

χqi
∆qi
q0i

, (5)

where subscript 0 shows the nominal value of a quantity, ∆ denotes small deviation
from the nominal values, and χ represent the local sensitivity indices. In particular,
the nominal wall model parameters are chosen to be corresponding default values (see
Section 2), ū0 is taken to be 〈ū〉, and ūτ0 is the prediction of the wall model for ū0 and
q0. According to Fig. 4(b) and (c), ūτ is most sensitive to ū and then to a lower extent to
the wall model parameters. χū is almost unchanged with h/δ, however, since sdev(ū)/〈ū〉
decreases with h/δ, the overall impact of ū on ∆ūτ/ūτ0 reduces at higher h/δ. Note that,
similar results were obtained for n = 30.

Figure 4: Variation of the normalized error in predicted 〈ūτ 〉 with h/δ for n = 20 (a) when the Spald-
ing law with κ,B = 0.4, 5.5 (blue), 0.415, 5.6 (red), 0.38, 4.0 (black), and the Reichardt law with
κ,C,B1, B2 = 0.4, 7.8, 11, 3.0 (magenta) and 0.395, 7.2, 8.0, 4.0 (yellow) are used. The local sensitivity
indices for the ūτ predicted by the Spalding law (b), and the Reichardt law (c) for default parameter
values and n = 20.
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It is also interesting to evaluate the ability of the wall models to predict the fluctuations
in ūτ . For the same set of wall models and their parameters as above, Fig. 5 illustrates the
error in the normalized fluctuations of the wall friction velocity, i.e. ū′+τ = sdev(ūτ )/〈ūτ 〉,
and also the correlation coefficient between ūτ predicted by a wall model and the refer-
ence uτM . As h/δ increases, the magnitude of ε[ū′+τ ] grows and cor(ūτ , uτM ) decreases.
Neither changing the wall model and its parameters nor the WMLES resolution n make
any difference in these trends. These observations are somewhat expected: at higher
distances from the wall, sdev(ū)/〈ū〉 reduces and ū becomes less correlated with the wall
friction velocity. The lack of dependency of ε[ū′+τ ] on q follows from the fact that q are
kept fixed and consequently do not affect the fluctuations of ūτ .

Figure 5: Variation of the normalized errors in ū′+τ (a), and the correlation between ūτ and uτM (b)
with h/δ for parameters changing as in Fig. 4(a).

Combining the above observations, it is concluded that to accurately predict 〈ūτ 〉, the
use of a-priori tuned-up parameters q based on accurate benchmark 〈u〉+-y+ is necessary.
However, as shown in Fig. 6, the optimized values of q vary with h/δ, although the varia-
tions become less significant as h/δ increases. When ū is sampled from the wall-adjacent
cell center, the magnitude of ε[〈ūτ 〉] for different combinations of κ and B is lower than
when ū is sampled from cells at higher h/δ. Also, the most accurate predictions of the
fluctuations of ūτ are obtained when the velocity samples are taken from the closest WM-
LES cell center to the wall. However, this may not be applicable to a-posteriori WMLES,
where the flow may be under-resolved in the first few cells near the wall, see e.g. [9].

Figure 6: Isolines of ε[〈ūτ 〉] % for different combinations of parameters when Spalding law is used with
n = 20. Input ū to the wall model is sampled from (left to right) h/δ = 0.025, 0.075, 0.325, associated to
the first, second, and seventh cell centers of the WMLES grid. The black line shows ε[〈ūτ 〉] = 0.
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4.2 Integrated formulation of wall models

In Section 4.1 it was shown that in the standard use of wall models, while the error
in 〈ūτ 〉 can be minimized by the choice of the wall model parameters, q, the optimal
values of q are dependent on h. Further, a significantly larger ε[〈ūτ 〉] was observed when
h was set to the distance to the wall-adjacent WMLES cell center. Here, an approach
for reducing the dependency of ε[〈ūτ 〉] on h is proposed. The idea is based on the the
work of Werner and Wengle [24]. Note that, given some wall model which can be written
as 〈u〉+ = F (〈uτ 〉, y, q), the wall-normal average of 〈u〉 over the interval [h1, h2] can be
expressed as,

1

h2 − h1

∫ h2

h1

〈u〉dy =
〈uτ 〉

h2 − h1

∫ h2

h1

F (〈uτ 〉, y, q)dy. (6)

In the framework of collocated finite volume discretization, the values stored at the cell
centers represent the volumetric averages of the unknowns across the corresponding cells.
Therefore, it can be argued that in this setting, ū, taken from a cell center located at
a wall-normal distance 0.5(h1 + h2), better approximates the left-hand-side of (6) rather
than 〈u〉 itself. Adopting this hypothesis leads to the following equation for computing
ūτ ,

(h2 − h1)ū− ūτ
∫ h2

h1

F (ūτ , y, q)dy = 0. (7)

Two ways of applying (7) are considered here. One is to integrate over a single cell,
with the cell center at a distance h from the wall. In this case, h1 and h2 are the lower and
upper wall-normal bounds of the cell, respectively. The second way involves integrating
over multiple consecutive off-the-wall cells. Then, h1 is set to zero, h2 is the upper bound
of the upper-most cell, and the value of ū is computed as the wall-normal average of the
WMLES velocity across all the considered cells.

Figure 7: Error in the mean predicted friction velocity, 〈ūτ 〉, as a function of the normalized distance to
the sampling point, h/δ. In the case of integration across multiple cells, h refers to the cell center of the
upper-most considered cell. Here, n = 30, and Reichardt law (3) with the following parameters is used
κ = 0.395, C = 7.2, B1 = 8, B2 = 4.

Figure 7 shows the error in 〈ūτ 〉 as function of h/δ, with Reichard law (3) used as F . It is
observed that compared to the standard method, integrating over a single cell significantly

8
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reduces the error, when ū is taken from the wall-adjacent cell. Integrating over multiple
cells stabilizes the behavior of the error across the whole considered range of h/δ.

4.3 Wall models with dynamically-adjusted parameters

As discussed in Section 4.1, algebraic wall models in their standard form, i.e. with
constant parameters, can, at best, only accurately predict 〈ūτ 〉. Here as a deviation from
the standard form, the possibility of having non-fixed q in the course of wall modeling is
investigated. Assume the reference wall friction velocity and signals of ū at different h/δ
are given and the parameters in wall model (1) are allowed to be adjusted for each joint
sample of uτM and ū. The aim is to see what the resulting joint PDF of the parameters
would be. To this end, the following algorithm is considered. At each ∆tM , take u∗τ = uτM ;
then,

1. at nl ≤ n heights from the wall associated with the cell centers of WMLES grid,
find inner scaled velocity and wall-normal distance,

ū∗i = ūi/u
∗
τ , y∗i = hiu

∗
τ/ν, for i = 1, 2, · · · , nl .

2. Estimate κ∗ and B∗ from the logarithmic law of the wall using ordinary least square
(OLS) method,

κ∗
−1

=
nl
∑nl

i=1 (ū∗i ln y∗i )− (
∑nl

i=1 ū
∗
i ) (
∑nl

i=1 ln y∗i )

nl
∑nl

i=1 (ln y∗i )
2 − (

∑nl

i=1 ln y∗i )
2 , B∗ =

1

nl

nl∑
i=1

[
ū∗i − κ∗

−1

ln y∗i

]
.

3. Use, for instance, Spalding law (2) with κ∗ and B∗, and ū at any h to estimate ūτ .

By using the data of Section 3, joint samples of κ and B (conditioned on the uτM and
ū data) shown in Fig. 8(a) are obtained. Although the marginal PDFs of B and κ seem
to be respectively normal and non-normal, further studies employing Bayesian parameter
estimation techniques is required to specify the PDF types more accurately. Here, the
mean value of the parameters are found to be 〈κ〉 = 0.364 and 〈B〉 = 2.645, which are
less than the standard values. However, these mean values are approximately on the
zero-error loci in Fig. 6.

It should be noted that in the second step of the algorithm, logarithmic law is chosen
because of its linear dependency on the parameters which makes applying the OLS method
valid and accurate. In the third step, independent of h/δ, approximately the same mean
and standard deviation of ūτ and also the same correlation between ūτ and uτM are
achieved. The latter is ≈ 0.91 and can be observed from Fig. 8(b-e).

To examine the idea of self-adjusted parameters in a-posteriori WMLES, the above
algorithm should be iterative starting from an initial guess for u∗τ . Once the difference
between ūτ estimated from step 3 and the starting u∗τ is low, the iteration stops. Imple-
menting such algorithm requires further study.

9
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Figure 8: Scatter plot and PDFs of the dynamically adjusted κ and B (a). Scatter plots of ūτ and
uτM (b-e) for ū sampled from h/δ = 0.025 (b), 0.075 (c), 0.375 (d), and 0.625 (e) in the WMLES with
resolution n = 20. Dots and lines of the same color respectively show ūτ and 〈ūτ 〉 predicted by Spalding
law with fixed (blue) and dynamically adjusted parameters (red). The green dashed line represents 〈uτM 〉.

5 CONCLUSIONS

The performance of two algebraic wall models, the Spalding and Reichardt laws, equa-
tions (2) and (3), respectively, in predicting wall shear stress is studied in the framework
of a-priori WMLES. To construct this framework, the input velocity samples to the wall
models are generated by spatial and temporal filtering of the velocity field of a high-quality
WRLES of channel flow at Reτ = 1000, as detailed in Section 3.

In Section 4.1, the sensitivity of the wall models’ predictions, ūτ , with respect to dif-
ferent factors is investigated. According to Fig. 4, the error in the mean value of the
predicted friction velocity, 〈ūτ 〉, varies with the wall-normal distance to the velocity sam-
pling point, h/δ, the wall model used and its parameters q. Based on the local sensitivity
analysis (5), the predicted ūτ is most sensitive to the velocity samples ū and then to the
von Kármán parameter κ in the wall models. As shown in Fig. 6, depending on h/δ,
there are different optimum values of the wall model parameters which result in accurate
〈ūτ 〉. However, neither the wall model and different combinations of its parameters, nor
the grid resolution improve the predicted fluctuations of ūτ , see Fig. 5. As demonstrated
in Fig. 7, by using an integrated formulation of the wall model the dependency of 〈ūτ 〉
on h/δ is removed and improved results are obtained. In Section 4.3, an algorithm is
proposed and tested to increase the correlation between predicted ūτ and the reference
value through dynamically adjusting the wall model parameters. For this purpose, ve-
locity samples in a column of WMLES cells with centers along the line perpendicular to
the cell of interest on the wall are used. The described framework for a-priori WMLES
can be seen as a complement to a-posteriori WMLES, which facilitates the evaluation of

10



S. Rezaeiravesh, T. Mukha and M. Liefvendahl

different modifications and ideas. In this regard, the acquired datasets of velocity signals
discussed in Section 3 are made publicly accessible 1.
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