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Abstract. This paper aims at estimating the stiffness of Glued Laminate Timber (GLT)
beams on the basis of an accurate analysis of the board’s mechanical properties and a
simple composite beam theory. Modern grading technologies, like laser scanning, have the
capability to accurately detect grain orientation on the surface of timber boards, allowing
for an accurate analysis of local mechanical properties. Conversely, this information is
only partially exploited in the estimation of strength and stiffness of GLT structural ele-
ments since, also nowadays, the mechanical properties of GLT beams are evaluated only
on the basis of boards grading, leading to extremely cautious but also coarse estimations.
A recent paper exploits information on wood’s mechanical properties and high resolution
data on grain orientation in order to estimate GLT beam stiffness obtaining promising
results. Unfortunately, the approach needs highly refined 2D Finite Element (FE) anal-
ysis resulting quite expensive from the computational point of view. Aiming mainly at
reducing the computational cost, this paper exploits high resolution information for the
estimation of homogenized mechanical properties of boards. Thereafter, it uses the so
called composite beam theory for the direct estimation of the GLT beam stiffness. The
comparison with experimental data highlights that the proposed approach provides esti-
mations with an accuracy similar to 2D FE analysis, but, since it is significantly cheaper,
it turns out to be more convenient. Finally, the simplicity of the beam model allows for an
easier understanding of relations between input and output, facilitating a more rigorous
interpretation of experimental data.

1 INTRODUCTION

Timber is an excellent building material: it comes from a renewable resource, exhibits
a very good strength vs weight ratio combined with good insulation properties, and its
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life cycle assessment is considered to be very positive. As a consequence, its usage is
worldwide increasing and the technologies used in wood industry are continuously evolving
in order to increase the efficiency of production processes and the performance of wooden
products. One big challenge, however, is that wood is a naturally grown material and
its mechanical properties are subjected to high variability. As a consequence, to meet
reliability, safety, and functionality requirements of structural elements, national and
international standards define very conservative processes in raw material selection and
high safety coefficients for both ultimate and serviceability limit state analysis (UNI EN
1408, 2011; EN 1995, 2004). Obviously, this translates into a low exploitation of the real
material potential. Thus, the development of new and more accurate grading strategies
as well as the exploitation of newly available technologies are strongly in the focus of
wood research (Petersson, 2010; Olsson et al., 2012). In practice, for example, this trend
leads industries to progressively abandon manual grading of boards which is replaced by
automatic grading machines in Glued Laminated Timber (GLT) beam production lines.

Within this complex and evolving context, several efforts are contributing to the defini-
tion of new procedures for an effective estimation of the GLT beams’ mechanical proper-
ties. As an example, Olsson et al. (2013) proposed a new and accurate grading method for
timber boards. Specifically, they detect the grain angles on board’s surfaces using a high
resolution laser scanner device. Thereafter, they use this information for computing local
Modulus of Elasticity (MOE) and, trough simple homogenization technique and suitable
calibration of parameters, cross-sectional stiffnesses. Finally, they identify the minimal
cross-section stiffness as a property highly correlated with boards’ strength. Aiming at
evaluating the effectiveness of the proposed procedure in predicting timber boards’ me-
chanical properties, Olsson et al. (2013) compare the proposed method with several others
existing in literature and extensively used in wood industry. The analysis of 105 boards of
Norway spruce indicates that the proposed procedure gives the possibility to significantly
enhance the effectiveness of boards’ grading.

According to these results, Kandler et al. (2015) exploited the laser scanner technology
in order to predict GLT beam stiffnesses. Specifically, they evaluate the clear wood me-
chanical properties according to an enhanced MicroMechanical Model (MMM) (Hofstetter
et al., 2005) and, on the basis of high resolution information on grain angle, estimate the
local axial stiffness of 350 boards from grading classes LS15 and LS22. The comparison
with dynamical tests on boards reveals a good accuracy of the proposed procedure with
coefficient of determination R2 > 0.85. Thereafter, they assemble boards in 50 GLT
beams (including 5 different configurations) tracking the lamellas throughout the produc-
tion process. Finally, they use information on stiffness distribution in a highly refined
2D Finite Element (FE) model and run linear analysis in order to estimate the stiffness
of assembled GLT beams. Comparison with four point bending test highlights that the
proposed procedure turns out to be accurate, with coefficient of determination R2 > 0.85.
Unfortunately, despite the high accuracy obtained by the so far introduced procedure, the
2D FE model needs up to ∼ 160 000 Degrees Of Freedom (DOFs), resulting therefore too
expensive and slow, especially if compared with the speed of machinery in modern GLT
production plants.
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This paper proposes a modification of the procedure proposed by Kandler et al. (2015).
In particular, aiming at avoiding the bottle-neck of highly refined 2D FE analysis, this pa-
per applies the so called theory of composite beams for the recovery of cross-section stress
distributions. Subsequently, this information is used for an effective and energetically
consistent evaluation of axial, bending, and shear stiffnesses.

On the one hand, the theory of composite beams is based on Timoshenko kinematics
(i.e., it assumes that the cross-section is rigid and can rotate with respect to the beam
centerline), but, given the internal forces and the beam geometry, provides a more accurate
reconstruction of the stress distributions within the cross-section (Bauchau and Craig,
2009, Chapter 5). As a significant example, it is worth mentioning that Frese and Blaß
(2012) exploit the composite beam theory for the recovery of stress distribution within
a computer model for the estimation of both stiffness and strength of asymmetrically
combined GLT beams.

The simplicity of both the theory of composite beams and the procedure for stiffness
calculation has the following three main advantages:

1. the drastic reduction of the computational cost,

2. the capability, starting from information on local boards mechanical properties, to
directly provide parameters useful for practitioners and consistent with models (e.g.,
Timoshenko beams and FE) usually employed in structural analysis, and

3. the possibility to easily recognize the influence of several parameters on the GLT
beam stiffness.

This paper aims at investigating the accuracy and effectiveness of such an approach for the
estimation of GLT beams. Accordingly, the paper uses data on boards MOE reported in
(Kandler et al., 2015) as input for the calculation of the beam stiffness and thereafter uses
the results of tests on assembled GLT beams in order to validate the proposed modeling
approach. The paper is structured as follows: Section 2 resumes the procedure for the
determination of the board’s stiffness, Section 3 provides formulas for the estimation of
beam stiffness, Section 4 analyzes the obtained numerical results, and Section 5 discusses
final remarks and delineate future research.

2 SYNOPSIS OF THE PROCEDURE FOR THE DETERMINATION OF
THE BOARD’S STIFFNESS

This work uses the results obtained in the study of Kandler et al. (2015). The procedure
presented therein includes (a) the computation of the clear wood stiffness tensor using
MMM and (b) the homogenisation over each cross section to obtain a so-called stiffness
profile Eboard(x). MMM takes clear wood density, moisture content, microfibril angle and
species specific properties into account (Hofstetter et al., 2005). While the clear wood
properties are assumed constant within each board, the fibre angle course varies strongly,
particularly in the vicinity of knots (Phillips et al., 1981). Therefore, Kandler et al
made use of fibre angle measurements obtained by employing a tracheid effect-based laser
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scanning device (Petersson, 2010). The measurements are obtained on a grid of approx.
1 mm in longitudinal direction and 4 mm in lateral direction of the board. In each
measurement point, the previously obtained clear wood stiffness tensor is transformed
according to the corresponding fibre angle value. Thereafter, for each cross section, the
mean value of the stiffness tensor component in x-direction is computed, resulting in a
stiffness profile as shown in Figure 1b.

Figure 1: (a) Typical wooden board and (b) resulting stiffness profile as well as the effective stiffness
value.

In contrast to the full stiffness profile model, in this work the input information is
reduced to a constant, homogenised stiffness value Eboard,eff for each lamella. For the
homogenised stiffness, the model analogy of strings in series is employed, i. e. an effective
longitudinal stiffness value Eboard,eff for each board is computed according to

Eboard,eff =
L∫ L

x=0
1

Eboard(x)

, (1)

where Eboard(x) is the stiffness profile and L is the length of the board. On average, the
homogenised stiffness value is 12.4% and 7.3% lower than the maximum stiffness profile
value (which corresponds to the clear wood stiffness value), for the two grading classes
LS15 and LS22, respectively. The only factor responsible for this difference is the fibre
angle distribution within each board. Since for the higher grading class LS22 less knots
and less fibre deviations are observed, it is also reasonable that the difference between
maximum stiffness value and homogenised stiffness value is smaller than for the lower
grading class.

3 STIFFNESS ESTIMATIONS BASED ON COMPOSITE BEAM THE-
ORY

This section provides the formulas used for the cross-section stiffness estimation. Specif-
ically, according to the Timoshenko kinematics, the composite beam theory assumes that
the cross-section is rigid and can rotate around the cross-section neutral axis, parallel to
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the z axis. As a consequence, axial strain εxx (y) has a linear distribution with respect to
the thickness coordinate y, as illustrated in Figure 2 (c). Thereafter, considering the lay-
ered non-homogeneous cross-section depicted in Figure 2 (a) and the piecewise constant
distribution of axial MOE E (y) depicted in Figure 2 (b), the axial stress turns out to be
piecewise linear with respect to y i.e., σxx (y) = E (y) · εxx (y) as illustrated in Figure 2
(d).

(a) (b) (c) (d)
O
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E2,G2

E3,G3

En,Gn
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Figure 2: GLT beam cross-section geometry (a), MOE E (y) (b), axial strain εxx (y) (c), and axial stress
σxx (y) (d) distributions within the cross-section. Adopted notation: n number of layer constituting the
beam, hb board’s thickness, b beam depth, board’s mechanical properties: Ei and Gi longitudinal MOE
and shear modulus, respectively.

The GLT beam axial stiffness is defined as

EA∗ = b

∫ htot

0

E (y) dy (2)

the y coordinate of the neutral axis of the cross-section subjected to a pure bending
moment reads

c∗ =
b
∫ htot

0
E (y) ydy

EA∗ (3)

and, finally, the GLT beam bending stiffness reads

EI∗ = b

∫ htot

0

E (y) (y − c∗)2 dy (4)

For convenience, we introduce the equivalent MOE of the beam that could be defined
according to the axial stiffness

Eaxial =
EA∗

bhtot
(5)

or according to the bending stiffness

Ebend = EI∗
12

bh3
tot

(6)
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It is obvious that, considering composite beams, Equations (5) and (6) provide different
estimations of the beam’s MOE. At least, estimation provided by Equation (6) is sensitive
to the board’s layout whereas the estimation provided by Equation (5) is not influenced
by any permutation of the board’s order. Considering the great dispersion (i.e., the
considerable standard deviation) of the board’s MOE (see e.g., Kandler et al., 2015, Table
3), it is reasonable to expect some difference between the two herein proposed estimations.
Conversely, the timber engineering practice does not distinguish axial and bending MOEs
(Porteous and Kermani, 2013; BS EN 1194, 1999).

4 NUMERICAL RESULTS

This section compares numerical and experimental results regarding the evaluation of
the bending (Subsection 4.1) and the axial MOE (Subsection 4.2).

4.1 Bending MOE

This section compares the bending MOE estimations provided by Equation (6) and
the ones based on four point bending tests. Kandler et al. (2015) provide the board’s
longitudinal stiffness on the basis of the results of axial dynamical tests and on the basis
of MMM and grain angle. Consistently, the estimation of the bending GLT beam MOE
will be indicated as Ebend

num,dyn or Ebend
num,MMM , according to the source of board’s data

employed for the calculation. The estimations based on the four point bending tests,
obtained according to the procedure detailed by Kandler et al. (2015) and indicated in
the following as Ebend

exp , are herein considered as reference values.
In Figure 3 the bending MOE values Ebend

num,dyn evaluated on the basis of board’s dynamic

tests are plotted against the experimental results of the four point bending tests Ebend
exp .

In Table 1 the relative statistics are reported.
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Figure 3: Comparison of the GLT beam bending MOE Ebend
num,dyn evaluated on the basis of board’s

dynamic tests with the experimental results of the four point bending tests Ebend
exp .
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A B C D E All
R2 0.766 0.823 0.986 0.942 0.951 0.951
e 0.080 0.086 0.056 0.054 0.058 0.067
s 0.057 0.056 0.009 0.015 0.017 0.038

Table 1: Coefficient of determination R2 for the GLT beam bending MOE evaluated on the basis of
board’s dynamic tests Ebend

num,dyn and the experimental results of the four point bending tests Ebend
exp ,

estimation of the mean value e and the standard deviation s of the normalized error.

For the prediction of the bending MOE Ebend
num,dyn the coefficient of determination R2

ranges from 0.77 to 0.99 considering separately each type of beam whereas the coefficient
of determination R2 for all the types is equal to 0.95. Conversely, looking at the normalized
error e, it is possible to notice that the bending MOE Ebend

num,dyn tend to overestimate the

experimental data Ebend
exp , with an error ranging from 5% to 9%. Finally, the standard

deviation of the normalized error s ranges from 1.5e-2 to 5.7e-2.
In Figure 4 the bending MOE values Ebend

num,MMM evaluated on the basis of MMM and
grain angle are plotted against the experimental results of the four point bending tests
Ebend

exp . In Table 2 the relative statistics are reported.
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Figure 4: Comparison of the GLT beam bending MOE Ebend
num,MMM evaluated on the basis of MMM

and grain angle with the experimental results of the four point bending tests Ebend
exp .

A B C D E All
R2 0.546 0.919 0.847 0.693 0.936 0.903
e -0.015 -0.004 -0.010 -0.049 -0.011 -0.017
s 0.116 0.042 0.033 0.035 0.020 0.059

Table 2: Coefficient of determination R2 for the GLT beam bending MOE evaluated on the basis of
MMM and grain angle Ebend

num,MMM and the experimental results of the four point bending tests Ebend
exp ,

estimation of the mean value e and the standard deviation s of the normalized error.
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For the prediction of the bending MOE Ebend
num,MMM the coefficient of determination R2

ranges from 0.55 to 0.94 considering separately each type of beam whereas the coefficient
of determination R2 for all the types is equal to 0.9. Furthermore, Ebend

num,MMM evaluated
via the composite beam theory tends to underestimate the experimental data with a
maximal error of 5% and a mean value smaller than 2%. Finally, the standard deviation
of the normalized error s ranges from 2.0e-2 to 11.6e-2.

Comparing this results with the ones reported in (Kandler et al., 2015, Table 5), it
is possible to appreciate how the simplified estimation herein proposed leads to increase
the coefficient of determination considering both all the samples together and each type
separately. Furthermore, it is possible to notice that the simplified approach generally
reduces or do not affect the magnitude of both the normalized error and the standard
deviation for each beam type considered separately (with the exception of types D).
Conversely, analyzing all the samples together, it is possible to notice how the simplified
approach tends to underestimate whereas 2D FE tends to overestimate experimental data,
despite the magnitude of error and standard deviation are similar.

4.2 Axial MOE

This section compares the axial MOE estimations provided by Equation (5) and the
ones based on dynamic tests. The estimation of the axial GLT beam MOE will be
indicated as Eaxial

num,dyn or Eaxial
num,MMM , according to the source of the board’s data employed

for the calculation. Conversely, the estimations based on the dynamic tests on beams,
obtained according to the procedure detailed by Kandler et al. (2015) and indicated in
the following as Eaxial

exp , are herein considered as reference values.
In Figure 5 the bending MOE values Eaxial

num,dyn evaluated on the basis of board’s dynamic

tests are plotted against the experimental results of the beam’s dynamic tests Eaxial
exp . In
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Figure 5: Comparison of the GLT beam axial MOE Eaxial
num,dyn evaluated on the basis of board’s dynamic

tests with the experimental results of the beam’s dynamic tests Eaxial
exp .

Table 3 the relative statistics are reported.
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A B C D E All
R2 0.850 0.876 0.862 0.848 0.981 0.970
e 0.010 0.006 -0.003 -0.013 0.001 0.000
s 0.031 0.034 0.021 0.016 0.011 0.025

Table 3: Coefficient of determination R2 for the GLT beam axial MOE evaluated on the basis of board’s
dynamic tests Eaxial

num,dyn and the experimental results of the beam’s dynamic tests Eaxial
exp , estimation of

the mean value e and the standard deviation s of the normalized error.

For the prediction of the axial MOE Eaxial
num,dyn the coefficient of determination R2 ranges

from 0.85 to 0.98 considering separately each type of beam whereas the coefficient of
determination R2 for all the types is equal to 0.97. Furthermore, looking at the normalized
error e, it is possible to notice that the axial MOE Eaxial

num,dyn is a good estimation of the

experimental data Eaxial
exp , with an error magnitude always smaller or equal than 1% for all

the types, with the exception of type D. Finally, the standard deviation of the normalized
error s ranges from 1.1e-2 to 3.4e-2.

Comparing this results with the ones reported in (Kandler et al., 2015, Table 4), it
is possible to appreciate how the herein proposed simplified estimation leads to increase
significantly the coefficient of determination, especially when each type is considered sep-
arately. Furthermore, it is possible to notice a moderate reduction of the normalized error
(excluding types A and E) whereas the standard deviation of the simplified approach is
approximatively the half of the one obtained using enhanced FE. Maybe, accounting for
the stiffness variations along the boards introduces some noise in the modeling procedure
proposed in (Kandler et al., 2015), leading to the lower correlation so far highlighted.
Furthermore, since both the input data for the model and the reference values Eaxial

exp are
obtained using the same experimental procedure, both are affected by the same system-
atic errors, leading to the highest coefficients of determination and the lowest normalized
error e and standard deviation s.

In Figure 6 the axial MOE values Eaxial
num,MMM evaluated on the basis of MMM and grain

angle are plotted against the experimental results of the beam’s dynamic tests Eaxial
exp . In

Table 4 the relative statistics are reported.

A B C D E All
R2 0.578 0.867 0.519 0.384 0.935 0.892
e -0.078 -0.083 -0.066 -0.112 -0.065 -0.081
s 0.094 0.031 0.042 0.037 0.015 0.052

Table 4: Coefficient of determination R2 for the GLT beam axial MOE evaluated on the basis of MMM
and grain angle Eaxial

num,MMM and the experimental results of the beam’s dynamic tests Eaxial
exp , estimation

of the mean value e and the standard deviation s of the normalized error.

For the prediction of the axial MOE Eaxial
num,MMM the coefficient of determination R2

ranges from 0.38 to 0.94 considering separately each type of beam whereas the coefficient of
determination R2 for all the types is equal to 0.89. Furthermore, looking at the normalized
error, it is possible to notice that the axial MOE Eaxial

num,MMM tends to underestimate the
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Figure 6: Comparison of the GLT beam axial MOE Eaxial
num,MMM evaluated on the basis of MMM and

grain angle with the experimental results of the beam’s dynamic tests Eaxial
exp .

experimental data Eaxial
exp , with an error magnitude ranging from 6% to 11%. Finally, the

standard deviation of the normalized error ranges from 1.5e-2 to 9.5e-2, resulting similar
to one obtained for bending MOE.

5 CONCLUSIONS

This paper considers a simplified approach for the evaluation of the GLT beam stiff-
ness based on an accurate analysis of the board mechanical properties and the theory of
composite beams.

The comparison of the results obtained with the herein proposed simplified method,
refined 2D FE analysis, and experimental tests allows to conclude that the simplified
method provides reasonable estimations in most of cases. In particular the following
main conclusions can be drawn:

1. The accuracy of the stiffness estimations proposed in Section 3 are similar or even
slightly better than refined 2D FE analysis proposed in (Kandler et al., 2015). It is
reasonable to suppose that highly refined data on stiffness distributions are affected
by some error. Maybe, the FE analysis propagates this error whereas the simplified
formulas, using averaged values, mitigate the effects of noise on board’s data.

2. Results obtained on the basis of board’s dynamic tests have generally an higher
coefficient of determination and a lower standard deviation of the normalized error
if compared with the results obtained from MMM and grain angle. This trend
is expected since dynamic testing directly provides averaged information for the
whole board, avoiding therefore error propagation coming from elaboration of local
information on grain angle and error source represented by the estimation of MMM
parameters.

3. Distinction of axial and bending MOE allows for a better fitting of both data coming
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from dynamic and four point bending tests on beams, indicating that the adoption
of a unique mechanical parameter E in order to identify the beam stiffness may
introduce undesirable errors.

On the one hand, since the simplified approach turns out to be significantly cheaper
than the considered 2D FE, it maybe represents a better approach for the estimation of
the GLT beam bending MOE. On the other hand, the composite beam theory can not
provide any information on local stress distributions. Therefore, it is expected to be a
coarse instrument for the estimation of GLT beam strength.

Future research includes the consideration of more refined beam theories in order to
model the effects of knot distributions.
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