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Abstract. The presented contribution discusses the derivation of design sensitivity information
of physical reaction forces arising in mechanical systems. The obtained gradient information can
be used for the design of support areas within problems stated on single scales as well as for the
design of microstructures in terms of representative volume elements (RVE) within numerical
homogenisation techniques. Especially, FE2 approaches based onLangrangemultipliermethods,
where the Lagrange multiplier itself can be connected to some force or traction values on the
surface of the RVE, can benefit from introduced and presented relations.

1 Introduction

Structural optimisation has a long tradition and has been investigated for many years and
in a variety of fields. Techniques for numerical homogenisation, i.e. FE2 methods, allow
investigations of the physical behaviour of complex heterogeneous materials and lead to a
remarkable number of applications and real world problems, see [15, 17] and references therein
for details. A combination of both established methods leads to a significant increase of possible
fields of applications and justifies its eminent importance. Besides mathematical algorithms,
sensitivity analysis is a fundamental topic within solution strategies for optimisation problems,
especially within techniques based on gradient information. Its realisation is responsible for
the efficiency and accuracy of used methods. In this context several works conclude, that
performing sensitivity analysis using variational methods according to [11] or [8, 9] seems to
be a particularly promising approach to design sensitivity analysis. Especially the enhanced
intrinsic formulation proposed by [2] and [1, 3] provides many beneficial advantages.

In some cases, it is interesting to analyse support areas of given systems to get detailed
information about the interaction between considered structural parts and the ground. The
profile of distributed forces, tractions or stresses can be investigated in order to make predictions
about mechanical behaviour or even about possible failure. Using some advanced information
it is also possible to improve and optimise several kinds of support areas. For instance, methods
for simultaneous design of structures and supports using techniques from topology optimisation
were proposed in [6]. Here, supports have been introduced as a new subset of design variables
within the optimisation process for minimum compliance and mechanism design with the target
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to find the optimal location of supports. A similar approach can be found in [25]. Aspects
concerning optimal design of supports for beam and frame structures in general were reported in
[5]. Several influences, e.g. number of supports or their position and stiffness, were investigated
and, in a similar fashion, publication [4] demonstrates a method for the determination of the
overall number, position and generalised forces of actuators in smart structures. The authors in
[19] tackled the shape design of rectangular support blocks and foundations of machines in order
to reduce mass. Their studies focused on external dynamic forces and loads coming from the
soil. Introduced constraints are horizontal and vertical amplitudes of forces and stresses on the
soil ground. The topics in [21] can be put in a similar context. The authors presentedmethods for
optimisation of boundary conditions subjected to maximum fundamental frequency of vibrating
structures in order to find optimal locations. A variational formulation and the approach of
material derivatives was the foundation in their gradient-based optimisation techniques. Another
field of applicationwas discussed in [7], where an algorithmwas proposed for shape optimisation
of contact problems with desired contact traction distribution on specified contact surfaces or
areas. It should be mentioned, that the quantity of interest was the distribution of forces or
tractions and therefore, it can be related to the presented sensitivity analysis of reaction forces.
In contrast to the topic of this contribution, the influence of the position of externally applied
constant loads or forces on structural response, such as nodal displacements, mean compliance
and stress, can be investigated and was done in [22]. The common aspect is, that in both cases
sensitivity of forces plays the central role, on one hand on the active side (applied force) and on
the other hand on the passive side (reaction force). The authors in [24] investigated shape design
sensitivities with respect to kinematical boundaries, i.e. influence on structural response due to
modifications on the Dirichlet boundary ΓD. Although the contribution at hand has a different
topic and intention, the support area is the domain of interest in both cases, i.e. in terms of
kinematical boundaries and sensitivity analysis of reaction forces.

The purpose of the presented study is to describe and examine a sensitivity relation for
reaction forces based on available tangent operators and the sensitivity relation for the state. The
obtained gradient information can be used to set up optimisation problems and to find optimal
designs with respect to the distribution of reaction forces. The overall amplitude of maximum
reaction forces can be controlled and adjusted in combination with several objective functionals,
e.g. compliance or volume. The presented approach is not comparable to previously referred
works directly, but it can be seen as an extension to the variety of available methods for analysis
and design of support areas. Further advantage is that derived relations can be transferred to
optimisation problems on multiple scales, where effective quantities of RVEs on the microscale
are formulated in terms of tractions or forces on the boundary, see [14, 15, 17] on theoretical
and numerical aspects and explanations on multiscale methods.

2 Design sensitivity analysis

In solid mechanics and other fields of computational mechanics, especially in the finite
element framework, the weak form of equilibrium R(v, s; η) = 0 plays a central role. It depends
on a general state variable v ∈ V, a design variable s ∈ S, and any test function η ∈ V. The
weak form is of similar importance for the setting of design sensitivity analysis within structural
optimisation and is often incorporated as an equality constraint within the posed optimisation
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problem. It has to be fulfilled for any arbitrary state and design. Its variation leads to the
well-known tangent stiffness operator for structural analysis and also to the tangent pseudo load
operator, which is used to formulate sensitivity relations to describe effects in the physical space
due to modifications in the material space. Altogether, derivatives or variations, especially
partial variations of objective functionals and constraints with respect to the state and design,
are essential for gradient-based solution strategies. Fundamental relations for the optimisation
of problems from structural mechanics are provided in this section. The variation of physical
reaction forces as objective or constraint functional is presented in Section 3 and investigated
numerically in Section 4.

Remark 2.1 (Notation) In general, the total variation of a quantity (·)(v, s) is given by the
partial variation with respect to v and a fixed design ŝ as well as the partial variation with
respect to s and a fixed state v̂. For a more compact representation, the notation δ(·) = (·)′ is
used and total and partial variations are formulated in the following compact way

δ(·)(v, s) = (·)′v(v, ŝ) + (·)
′
s(v̂, s) = (·)

′(v, s). (1)

Without going into detail, the compilation of all following variations is based on the publications
[1] and [13]. The variation of the weak form can be motivated in several ways, e.g. minimisation
principle of overall energy, solution of an optimisation problem for an arbitrary objective function
with an equilibrium constraint, or finally the simple statement, that any perturbation in the
design space must not violate the physical equilibrium state. Therefore, the total variation of the
nonlinear residual can be investigated

R′ = R′v(v, s; η, δv) + R′s(v, s; η, δs) = k(v, s; η, δv) + p(v, s; η, δs) = 0. (2)

The variations of the physical residual with respect to v and s are introduced by the tangent
operators k(v, s; η, δv) = R′v(v, s; η, δv) for physical stiffness and p(v, s; η, δs) = R′s(v, s; η, δs)
for pseudo load. The solution of the sensitivity relation from Eq. (2) allows the derivation of
the implicit sensitivity of the state in current equilibrium point (v, s)

δv = s(v, s; δs). (3)

After standard finite element discretisation with the discrete approximation vh for the state
and sh for design, the discrete parameters v ∈ Rnv and s ∈ Rns can be used to obtain the
matrix description of the continuous forms, cf. [23] for instance. The approximations for the
corresponding variations δv ∈ Rnv and δs ∈ Rns as well as for the test function η ∈ Rnv are
chosen in the same manner. The overall number of the discrete state variables in Vh ⊂ V is
given by nv, and ns is the number of discrete design parameters in Sh ⊂ S.

R(vh, sh; ηh) = η
TR, R ∈ Rnv, (4)

k(vh, sh; ηh, δvh) = η
TKδv, K ∈ Rnv×nv, (5)

p(vh, sh; ηh, δsh) = η
TP δs, P ∈ Rnv×ns . (6)
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The discrete form of the variation of the weak form in Eq. (2) evaluated in (vh, sh) reads Eq. (7)1
and thus, due to the arbitrariness of the test function η, Eq. (7)2 holds true.

R′ = ηTR′ = ηT [Kδv + P δs] = 0, R′ = Kδv + P δs = 0. (7)

Eq. (7)2 is utilised for the evaluation of the discrete form of the sensitivity relation from Eq. (3)

δv = Sδs with S = −K−1P and S ∈ Rnv×ns (8)

for any arbitrary design variation δs . The introduced matrix S is the so called design sensitivity
matrix. It connects variations in the material space with variations in the physical space and
allows predictions of changes in the state v due to design modifications δs .

Remark 2.2 (Choice of design parameters) Using finite element techniques, a general struc-
tural analysis of given systems is based on discrete nodal finite element coordinates X. Within
so-called parameter free optimisation, sensitivity analysis is performed with respect toX. If the
geometry description is realised using computer aided geometric design (CAGD), coordinates
of control points of Bézier curves can be chosen as design variables. The design parameters X
depend then on the new defined design variables s , i.e. X(s). Therefore, the sensitivities with
respect to X have to be transformed via a design velocity fields matrix V = dX/ds into the
chosen design space. The final discrete variation of an arbitrary functional f (v, X(s)) reads

f ′ =
∂ f
∂v

δv +
∂ f
∂X

dX
ds

δs =

(
∂ f
∂v

S +
∂ f
∂X

)
V δs, (9)

with the matrix S being the total derivative of the state v with respect to nodal coordinates X,
i.e. S = dv/dX. For further hints and explanations on design velocity fields see [8, 9].

The general discrete optimisation problem with an objective functional J, various constraints
h, g, lower and upper side constraints s l, su can be introduced in the following abstract way.

Problem 1 (General discrete optimisation problem) Find {vh, sh} ∈ Vh × Sh of the discrete
objective functional J : Vh × Sh → R such that

min
v,s∈Vh×Sh

J(v, s) subject to the constraints h(v, s) = 0, g(v, s) ≤ 0, s l ≤ s ≤ su (10)

with h(v, s) and g(v, s) being matrix representations of equality and inequality constraints.

3 Sensitivity analysis of physical reaction forces

For the derivation of the sensitivity relation for the physical reaction forces only parts of
the discrete physical residual in Eq. (4) have to be considered. Therefore, some arrangements
are necessary in advance. The discrete relations presented in Section 2 have to be partitioned
in internal and boundary parameters as specified in the following. With regard to the discrete
formulation of derived sensitivity relations, the discrete parameters, i.e. the state parameters v
and design parameters X, are partitioned into contributions on the Dirichlet boundary ΓD, the
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Neumann boundary ΓN and into those of the inner domain Ω. With the overall representation
of the domain Ω = Ω ∪ Γ and the boundary Γ = ΓN ∪ ΓD, where ΓN ∩ ΓD = ∅, all appearing
quantities can be identified by the notation

State: (·)a ∈ Ω ∪ ΓN and (·)b ∈ ΓD,

Design: (·)A ∈ Ω ∪ ΓN and (·)B ∈ ΓD
(11)

with the set (a, b) for the partition of state variables and the set (A,B) for the partition of design
parameters. The number of state quantities (·)a is given by na, and the number of state quantities
(·)b is given by nb. Same holds true for the design partition and therefore, the number of design
quantities (·)A is given by nA, and the number of design quantities (·)B is given by nB. It is useful
to introduce these different kinds of subsets because it finally allows to define and prescribe
different types of boundary conditions, i.e. explicit boundary conditions in physical and explicit
boundary conditions in material space. Using this definition, the state v , the variation of the
state δv , the design parameters X and the variation of the design parameters δX are divided

v =
[
va vb

]T
, δv =

[
δva δvb

]T
, X =

[
XA XB

]T
, δX =

[
δXA δXB

]T (12)

with dimensions {va, δva} ∈ Rna , {vb, δvb} ∈ Rnb , {XA, δXA} ∈ R
nA and {XB, δXB} ∈ R

nB . As
a consequence, a similar partition holds true for the physical residual vector in Eq. (4) with the
dimensions Ra ∈ R

na , Rb ∈ R
nb , as well as for the variation of the residual vector Eq. (7)2

R(v,X;η) =
[
Ra(va, vb,XA,XB;η)
Rb(va, vb,XA,XB;η)

]
, R′ =

[
R′a
R′b

]
=

[
(Ra)

′
v + (Ra)

′
X

(Rb)
′
v + (Rb)

′
X

]
. (13)

Here, the partial variations of the partitioned residualRa,Rb have to be determined with respect
to the partitioned state va, vb and with respect to the partitioned design XA,XB. The explicit
partitioned representation of Eq. (7)2 is of the form

R′ = R′v +R
′
X =

[
(Ra)

′
v

(Rb)
′
v

]
+

[
(Ra)

′
X

(Rb)
′
X

]
=

[
Kaa Kab
Kba Kbb

] [
δva
δvb

]
+

[
PaA PaB
PbA PbB

] [
δXA
δXB

]
= 0, (14)

with nodal coordinatesX of the finite element nodes as design parameters. Resulting dimensions
of obtained sub-matrices for the stiffness and pseudo load matrix can be specified by

Kaa ∈ R
na×na, Kab ∈ R

na×nb, Kba ∈ R
nb×na, Kbb ∈ R

nb×nb,

PaA ∈ R
na×nA, PaB ∈ R

na×nB, PbA ∈ R
nb×nA, PbB ∈ R

nb×nB .
(15)

Relation (14) can be rearranged and allows the explicit computation of the sensitivity of the state
from Eq. (8)

δva = −K
−1
aa

[
PaA PaB

] [
δXA
δXB

]
= −K−1

aa PaδX = SaδX . (16)

With Pa =
[
PaA PaB

]
, the resulting quantity Sa = −K−1

aa Pa contains the sensitivity information
of the state in the inner domain Ω and on the Neumann boundary ΓN. Compared to Eq. (8)
it can be termed reduced sensitivity matrix. The part (·)b in the overall sensitivity matrix S,
i.e. Sb, vanishes due to the fact, that the boundary conditions for the displacements vb on the
Dirichlet boundary ΓD are fulfilled strongly and therefore, their variations δvb vanish.
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3.1 Variation of the external part of physical residual

In structural analysis, equilibrium is fulfilled for a state variable v and a fixed designX if the
residual equation R(v, s; η) = 0 vanishes. Referring the partitioned residual (13)1 and the split
in internal and external contributions Rint (v,X;η) and Rext (v,X;η) one obtains

R(v,X;η) = Rint (v,X;η) −Rext (v,X;η) =
[
Rint

a
Rint

b

]
−

[
Rext

a
Rext

b

]
= 0. (17)

Dimensions of the residual in Eq. (17) correspond to discussed quantities
{
R,Rint ,Rext } ∈

R(na+nb)=nv and therefore
{
Rint

a ,Rext
a

}
∈ Rna,

{
Rint

b ,Rext
b

}
∈ Rnb . In the solution v , reaction

forces on ΓD of a given system are equal to their internal counterparts and can be computed
using

Rext
b (v,X;η) = Rint

b (v,X;η). (18)

Remark, that relation (18) is only valid for fully converged solutions v . Otherwise, errors are
unavoidable and have a significant influence on following sensitivity relations. For the sensitivity
relation of reaction forces, parts of already discussed sensitivity relations in Section 2 can be
considered. The variation of an arbitrary function f is presented in Remark 2.2 and now, this
principle can be transferred to the variation of reaction forces. Hence, variations with respect to
the state and design are necessary(

Rext
b

)′
=

(
Rint

b

)′
=

(
Rint

b

)′
v
+

(
Rint

b

)′
X
. (19)

In contrast to the variation of the overall residual, only variations of the internal part Rint are
necessary. For that reason, the investigation of the sensitivity relation for the residualR in terms
of internal and external parts Rint and Rext is conducted in the following. The total variation of
the splitted residual in Eq. (17) reads

R′ =
(
Rint (v,X;η) −Rext (v,X;η)

)′
=

(
Rint

)′
v
−

(
Rext

)′
v
+

(
Rint

)′
X
−

(
Rext

)′
X
. (20)

Using the resulting partial variation of R with respect to the state variable v , cf. Eq. (12),

R′v =

[ (
Rint

a
)′
v −

(
Rext

a
)′
v(

Rint
b

)′
v
−

(
Rext

b
)′
v

]
=

{[
K int

aa K int
ab

K int
ba K int

bb

]
−

[
Kext

aa Kext
ab

Kext
ba Kext

bb

]} [
δva
δvb

]
(21)

and the resulting partial variation of R with respect to design X, cf. Eq. (12),

R′X =

[ (
Rint

a
)′

X −
(
Rext

a
)′

X(
Rint

b
)′

X −
(
Rext

b
)′

X

]
=

{[
P int
aA P int

aB
P int
bA P int

bB

]
−

[
P ext
aA P ext

aB
P ext
bA P ext

bB

]} [
δXA
δXB

]
, (22)

the linearised form of the total variation of the residual R can be represented by

R′ =
(
K int −Kext

)
δv +

(
P int − P ext

)
δX . (23)
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The partitioned stiffness matrix K in Eq. (21) is equal to the matrix introduced in Eq. (5).
The derivation of the stiffness matrix based on the internal and external part of the residual, as
presented in Eq. (21), results in two contributions. On one hand, K int contains the material
and geometrical contribution to the stiffness, known from the variation of the internal part of
the residual. On the other hand, Kext is the so called load correction matrix and results from
the variation of the external part of the residual. Initially, this term was proposed in [16] and
[10] and has to be considered if external forces depend on the deformation themselves. Further
explanations on theoretical background and numerical realisation can be found in [18, 20, 23]
and [27, 26]. The overall stiffness matrixK = K int −Kext from Eq. (5) is subdivided in Eq. (21)
in sub-matrices with the dimensions

{
K,K int ,Kext } ∈ R(na+nb)×(na+nb)=nv×nv and therefore{

K int
aa ,K

ext
aa

}
∈ Rna×na,

{
K int

ab ,K
ext
ab

}
∈ Rna×nb,{

K int
ba ,K

ext
ba

}
∈ Rnb×na,

{
K int

bb ,K
ext
bb

}
∈ Rnb×nb .

In Eq. (23) the quantities P int and P ext represent internal and external contributions to the
overall pseudo load matrix P = P int − P ext from Eq. (6) and are subdivided in Eq. (22) to
sub-matrices with the dimensions

{
P ,P int ,P ext } ∈ R(na+nb)×(nA+nB)=nv×nX and therefore{

P int
aA ,P

ext
aA

}
∈ Rna×nA,

{
P int
aB ,P

ext
aB

}
∈ Rna×nB,{

P int
bA ,P

ext
bA

}
∈ Rnb×nA,

{
P int
bB ,P

ext
bB

}
∈ Rnb×nB .

Using obtained sub-matrices, relation (19) for the sensitivity of reaction forces continues to(
Rext

b

)′
= K int

ba δva +
[
P int
bA P int

bB
] [
δXA
δXB

]
= K int

ba δva + P
int
b δX =

(
K int

ba Sa + P
int
b

)
δX, (24)

where the contributions to the pseudo load matrix are summarised in P int
b =

[
P int
bA P int

bB
]
. Here,

the relation (16) for the sensitivity of the state variable δva is used. The sensitivity relation in
Eq. (24), particularly the quantity which corresponds to the partial derivative of the external
part of the residual on boundary ΓD with respect to design ∂Rext

b /∂X = K
int
ba Sa + P

int
b , can be

implemented into an existing framework for structural optimisation. The reaction forces Rext
b

as well as their sensitivities
(
Rext

b
)′ can be used as objective or constraint functional within the

posed optimisation Problem 1. Details on the explicit formulations forR,K and P can be found
in [12], for instance. Analytically derived sensitivities can be verified using the finite difference
method witch can be applied to prove the accuracy of provided sensitivity information.

4 Applications and numerical investigations

In the following example close attention is paid to the sensitivity analysis of physical reaction
forces, which are used as indicators for the design of support areas. Computations for compliance
and volume minimisation with the reduction of the resulting maximum amplitude of reaction
forces to a certain prescribedmaximumvalue using inequality constraints accentuate the possible
usage within stated optimisation problems. According to the sketch in Fig. 1, a multi-material
domain with the side length A, loaded by a surface load on the top, fixed on the ground, and
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boundary
domain ΓD

q

2A

A

Ek, νk
Es, νs

Material:

x

y

A 1.0
nelx 20
nely 40
Es 25000
Ek 0.5·Es

νs= νk 0.20
t 0.10
q 25.0

Model parameters

constraint area
side constraints
design variables
CAGD parameters

Figure 1: Domain with multi-material: mechanical system, FE-mesh, boundary conditions and load case, model
parameters and optimisation model (design variables, side constraints and constraints area)

two different materials, an outer shell material Es and a kernel material Ek , is investigated. Due
to symmetry, half of the mechanical system is considered. The finite element analysis model
is also illustrated in Fig. 1. The overall number of elements nel = 800 for the FE-mesh results
from the choice of the number of elements in x- and y-direction (nelx = 20, nely = 40). For a
pure displacement and geometrically non-linear element formulation based on two displacement
degrees of freedom per node and Neo-Hookean constitutive law, the overall number of degrees
of freedom results to nv = 1722. All investigations are based on the model parameters listed
in Fig. 1. It also contains the underling optimisation model, where a CAGD-model with 16
control points assembling one Bézier patch is used for the geometry description. The number of
design parameters on the nodal basis amounts nX = 1722 and on the geometry basis ncp = 32.
The final subset of design variables used for optimisation counts ns = 7 design parameters and
is reselected from the set of parameters for the described geometry model. Hints on the choice
of design variables in terms of nodal and geometry design parameters are given in Remark 2.2.
Referring the formulation of an optimisation Problem 1, objectives and constraints are specified
in following subsections. Here, only lower and upper side constraints are introduced[
0.7 0.4 0.4 0.4 0.4 0.6 0.8

]T
= s l ≤ s ≤ su =

[
1.3 1.6 1.6 1.6 1.6 1.4 1.2

]T
.

(25)
They are valid for subsequent investigations and are arranged in descending order from top to
bottom according to the optimisation model in Fig. 1. The surface load q = 25.0 is distributed
on the present 11 nodes on the top equivalently and results in nodal forces of Fn = 2.5 for regular
and of Fnc = 1.25 for corner nodes.

4.1 Compliance minimisation and reduction of forces

In this study, the compliance minimisation problem with the objective J = C = FTv is
investigated. The physical reaction forces in the constraint area (cf. Fig. 1) have to be reduced
to the maximum amplitude of 75% compared to the amplitude of reaction force for the initial
design. This can be done by the incorporation of the reaction forces as inequality constraints

8



W. Kijanski and F.-J. Barthold

g = FR and the definition of FR,max as the maximum value. Used side constraints s l, su are
presented in Eq. (25). The mathematical optimisation algorithm used 11 iterations to obtain a
minimum value for the objective, which could be reduced by approximately 6% compared to the
initial design. In parallel, the incorporation of reaction forces as constraints gives the advantage
and the possibility to reduce them too. Both results are presented in Fig. 2. The optimal
distribution of design variables, which are all in the prescribed boundaries or side constraints
s l, su is pictured in Fig. 3. Here, the contour of the initial profile of reaction forces is compared to
the profile of reaction forces for the optimised design. Finally, it is the engineer’s or designer’s

Figure 2: Optimisation results (objective and constraint) over iterations

constraint area
design boundaries
design variables
CAGD parameters

contour of reduced reaction forces
contour of initial reaction forces

Figure 3: Optimal design and comparison of reaction forces for the deformed system (scaling(v ) = 1.0)

choice how to manage the balance between compliance minimisation and reduction of reaction
forces. If the required maximum value for reduction of 75% is increased, the balance in the
overall potential of the system between objective and constraint will change and the compliance
minimisation will lead to higher reduction values than only 6%.
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4.2 Volume minimisation and reduction of forces

Here, the setup for the optimisation problem is similar to the setup for the compliance
minimisation presented in Section 4.1. The only difference is that the objective function will
be exchanged and the overall volume J = V of the given system has to be minimised. The
maximum amplitude of reaction forces has to be reduced to 75% compared to the initial design
by incorporation of inequality constraints and a maximum value FR,max. The optimisation
algorithm reaches the optimum value for the objective after 11 iterations and the optimisation
process is aborted. The overall volume can be reduced by approximately 37% compared to
the initial design. Furthermore the constraint for the reaction forces is fulfilled and allows to
reduce them by 25% compared to the initial design. These results are illustrated in Fig. 4. The
corresponding distribution of design variables which remain in the prescribed side constraints
s l, su from Eq. (25) as well as the contour of the initial and optimised profile of reaction forces
is presented in Fig. 5. In this case, the designer or the engineer also has to decide on the balance
between volume minimisation and reduction of reaction forces. For the chosen and presented
optimisation setup, the large resulting displacements on the right top side of the system (cf. Fig.
5) are the consequence. If the system or the material is able to handle this kind of displacement
amplitude, the gain is the enourmous reduction of volume and the reduction of final reaction
forces as pressure loads on the ground.

Figure 4: Optimisation results (objective and constraint) over iterations

5 Conclusion

Based on the variational approach for design sensitivity analysis, and especially on the
intrinsic formulation with enhanced kinematics, the sensitivity relation for physical reaction
forces was derived from available tangent operators and the sensitivity relation for the state. The
introduced fundamental relations were partitioned into contributions in the inner domain and
on two types of boundaries. This decomposition allowed to divide resulting tangent operators
in necessary contributions for the required sensitivity information. The obtained gradient
information was investigated concerning compliance and volume minimisation. Two studies
accentuated possible usage and application of the sensitivity information, for instance how to
control amplitudes of arising forces which interact with foundations of mechanical parts.

10
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constraint area
design boundaries
design variables
CAGD parameters

contour of reduced reaction forces
contour of initial reaction forces

Figure 5: Optimal design and comparison of reaction forces for the deformed system (scaling(v ) = 1.0)
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