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Abstract. Linear elastic analysis of truss structures can be done within the finite element
method formalism as well as without the approximation of the displacement field, by
algebraic equations. The present paper is an extension of the considerations presented in
[1] to the algebraic equations for geometric stiffness matrix. The matrix allow to include
the influence of self-equilibrated systems of forces on the response of truss structure. It
is a crucial aspect for the qualitative and quantitative analyses of tensegrity-like trusses.

1 INTRODUCTION

Trusses are an important class of Structural Mechanics tasks. Static analysis of trusses
in a linearly elastic range can be carried out by means of equations obtained using the
finite element method (FEM) [2], which dominates the computational market. The truss
equations can also be derived by omitting the typical for FEM approximation of dis-
placements by means of algebraic equations (see [3]). The synthesis of the algebraic
formulation, along with the extension to the analysis of frames and grillages, was carried
out in [1].

In trusses there are frequently self-equilibrated systems of axial forces that meet iden-
tically homogeneous systems of equilibrium equations. Such a situation occurs in the
qualitative and quantitative analysis of tensegrity lattice structures [4, 5]. This paper
supplements the considerations given in [1] with the algebraic form of expressions on the
geometric stiffness matrix, which allows analyzing the influence of self-balancing longitu-
dinal forces on the work of the structure. This formulation is of significant importance
from the scientific (optimization, tensegrity, convex sets, etc.) as well as didactic point of
view.
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2 GENERAL FORMULATION

Let us to consider a plane pin-joint structure composed of e straight and prismatic
bars of the lengths lk, cross sections Ak and Young modulus Ek. The bars are connected
in nodes in which the number of s nodal displacements qj and nodal forces Qi are defined
[1]. Axial forces Nk can be expressed by the extensions of bars ∆k in the form

Nk =
EkAk

lk
∆k, k = 1, 2, ..., e. (1)

The extensions ∆k are a combination of nodal displacements

∆k =
s∑

j=1

Bkjqj, j = 1, 2, ..., s. (2)

The extension matrix [Bkj] can be defined by the projection of nodal displacements on
the bar axes. Additionally the self-equilibrated system of axial forces Sk which satisfy the
homogeneous set of equilibrium equations

e∑
k=1

BjkSk = 0 (3)

is considered. The self-equilibrated forces as well as possible mechanisms of the structure
can be found with the use of singular value decomposition (SVD) of the matrix [Bik] [6].
If one consider equations of equilibrium in the actual configuration then moment

Mk = Sklkψk (4)

is acting on each bar. Angles of bar rotations ψk can be expressed as a combination of
nodal displacements

ψk =
1

lk

s∑
j=1

Ckjqj. (5)

The matrix [Ckj] can be defined by the projection of nodal displacements on the direc-
tion perpendicular to bar axes with right-hand positive signs of rotations.

The above formalism leads to the linear system of algebraic equations

s∑
j=1

(kij + kGij)qj = Qi (6)

in which the stiffness matrix kij and geometric stiffness matrix kGij can be experssed in
algebraic form

kij =
e∑

k=1

Bki
EkAk

lk
Bkj, (7)
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Figure 1: The ”X” truss

kGij =
e∑

k=1

Cki
Sk

lk
Ckj. (8)

The above considerations can be relative easily extended for 3D truss structures.
Let us define the p-th row of the matrix Bkj by bp and p-th row of the matrix Ckj by

cp. The stiffness and geometric stiffness matrices can be decomposed in the form

K =
e∑

p=1

K(p), K(p) =
EpAp

lp
bp ⊗ bp, (9)

KG =
e∑

p=1

KG(p), KG(p) =
Sp

lp
cp ⊗ cp, (10)

where a ⊗ b = [aibj] is a dyadic product of two vectors a and b. The expression for K
was introduced in [1] and the expression for KG is original. The order of matrices K(p)

and KG(p) is one. This kind of decomposition can be successfully used in optimization [7]
or in the uncertainity analysis with the use of convex sets [8].

3 EXAMPLE

The subject under consideration is six element ”X” truss with five nodal displacements
(Fig. 1).

Let us introduce the following matrices

B = [Bik] =



0 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−
√
2
2

√
2
2

0 0
√
2
2

0 0
√
2
2

√
2
2

0

 ,
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C = [Cik] =



1 0 0 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 0 0√
2
2

√
2
2

0 0 −
√
2
2

0 0
√
2
2
−

√
2
2

0

 ,

E = diag
[
EiAi

Li

]
= diag

[
E1A1

a
,
E2A2

a
,
E3A3

a
,
E4A4

a
,
E5A5

a
√

2
,
E6A6

a
√

2

]
=

=
EA

a
diag

[
1, 1, 1, 1,

√
2

2
,

√
2

2

]
.

The self-equilibrated set of forces is obvious but can be also found by the SVD decom-
position of the extension matrix Bkj. There are no mechanism in the structure.

S = diag
[
Si

Li

]
= diag

[
S1

a
,
S2

a
,
S3

a
,
S4

a
,
S5

a
√

2
,
S6

a
√

2

]
=

= diag
[
S

a
,
S

a
,
S

a
,
S

a
,
−S
a
,
−S
a

]
=
S

a
diag [1, 1, 1, 1,−1,−1] .

Global stiffness and geometric stiffness matrices, according to the formulae (7) and (8),
are the following

K = [kik] =
EA

4a


4 +
√

2 −
√

2 −4 0 −
√

2

−
√

2 4 +
√

2 0 0
√

2

−4 0 4 +
√

2
√

2 0

0 0
√

2 4 +
√

2 0

−
√

2
√

2 0 0 4 +
√

2

 ,

KG =
[
kGik
]

=
S

2a


1 −1 0 0 1
−1 1 0 −2 1
0 0 1 1 −2
0 −2 1 1 0
1 1 −2 0 1

 .
Equivalent matrices can be derived through the Finite Element Method [2, 5]. If the
structure on Fig. 1 is divided into six finite elements with the node numbers 1-2, 2-3,
3-4, 1-4, 2-4, 1-3 and the element lengths L1 = L2 = L3 = L4 = a, L5 = L6 = a

√
2 the

following matrices are to be defined on each finite element level:

ke + kG
e =

EeAe

Le


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 −1

+
Se

Le


0 0 0 0
0 1 0 −1
0 0 0 0
0 1 0 −1

 , e = 1, ..., 6,
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d1 =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
−1 0 0 0 0

 , d2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , d3 =


0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

 ,

d4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , d5 =


√
2
2

√
2
2

0 0 0

−
√
2
2

√
2
2

0 0 0

0 0 0 0
√
2
2

0 0 0 0 −
√
2
2

 , d6 =


0 0 0 0 0
0 0 0 0 0

0 0
√
2
2
−

√
2
2

0

0 0
√
2
2

√
2
2

0

 .
Homogeneous boundary conditions are already included in the FEM matrix formula-

tion. Global matrices can be derived as K+KG =
∑6

e=1 d
T
e

(
ke + kG

e

)
de to obtain exactly

the same matrices like in the algebraic formulation presented above. The matrices can be
also decomposed with the formulae (9) and (10) in the following form

K =
E1A1

a


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+
E2A2

a


1 0 −1 0 0
0 0 0 0 0
−1 0 1 0 0
0 0 0 0 0
0 0 0 0 0

+
E3A3

a


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

+

+
E4A4

a


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

+
E5A5

2a


1 −1 0 0 −1
−1 1 0 0 1
0 0 0 0 0
0 0 0 0 0
−1 1 0 0 1

+
E6A6

2a


0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 0 0

 ,

KG =
S1

a


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+
S2

a


0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0

+
S3

a


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −1
0 0 0 0 0
0 0 −1 0 1

+

+
S4

a


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+
S5

2a


1 1 0 0 −1
1 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
−1 1 0 0 1

+
S6

2a


0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 0 0

 .
4 CONCLUSIONS

The present paper is an extension of [1] for the algebraic form of the geometric stiffness
matrix for the self-equilibrated systems of normal forces in truss structures. Approxima-
tion of the unknown displacement field is not required. The results are the same as in the
finite element method. Decomposition of the geometric stiffness matrix is proposed as a
sum of dyadic product of the rows of extension matrix multiplied by the stiffness of bars.
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The form is suitable for the optimization as well as in the uncertainity analysis with the
use of convex sets.
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