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Abstract. In this work recent advancements are presented in utilising deterministic sym-
bolic regression to infer algebraic models for turbulent stress-strain relation with sparsity-
promoting regression techniques. The goal is to build a functional expression from a set
of candidate functions in order to represent the target data most accurately. Targets are
the coefficients of a polynomial tensor basis, which are identified from high-fidelity data
using regularised least-square regression. The method successfully identified a correction
term for the benchmark test case of flow over periodic hills in 2D at Reh = 10595.

1 INTRODUCTION

The workhorse in industry to solve the closure problem of the Reynolds-Averaged
Navier-Stokes (RANS) equations is still the linear eddy-viscosity (LEV) or Boussinesq hy-
pothesis and corresponding transport models. The lower computational costs compared
to high-fidelity approaches, e.g. large-eddy simulation, come at the price of low predic-
tive performance for flows with separation, adverse pressure gradients or high streamline
curvature. Explicit Algebraic Reynolds-Stress Models (EARSM) were introduced to lift
the predictive fidelity of RANS at similar costs as LEV. Commonly, EARSM are derived
by projecting a Reynolds-stress model (RSM) onto a polynomial tensor basis with the in-
tention that the resulting model inherits a part of the predictive fidelity of the underlying
RSM.
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Recently a new approach based on symbolic regression utilising genetic programming
(GP) was introduced to learn the non-linear stress-strain relationship for the anisotropy
tensor based on high-fidelity reference data [1, 2]. This data-driven method retains the in-
put quantities used to derive EARSM but replaces the commonly used projection method
to find the formal structure of the model by an evolutionary process based on model fit-
ness. In that way it produces models similar to EARSM but with a proven mathematical
form to reproduce the data it was trained on. This method has the potential to generate
numerically robust models with a high predictive fidelity. Even though the method is
non-deterministic it discovers similar expressions for different runs. However, it is not
clear if this variability comes from the data or is due to the inherent randomness of GP.

To overcome this characteristic of GP a couple of non-evolutionary methods for sym-
bolic regression have been introduced recently, such as Fast Function Extraction (FFX)
[3], Elite Bases Regression (EBR) [4], Sparse identification of nonlinear dynamics (SINDy)
[5] or PDE functional identification of nonlinear dynamics (PDE-FIND) [6]. These meth-
ods being based on sparsity-promoting linear regression show for a couple of problems
similar or better performance and higher convergence rates for high-dimensional prob-
lems than GP. Due to their deterministic nature they discover always the same model
given input quantities and parameters. By varying the input parameters of the method a
hierarchy of models of varying complexity and predictive fidelity can be discovered.

In this work we follow a two-step process. First, we introduce a model-form error
term in the constitutive turbulence closure and compute the discrepancy tensor field
and regress it onto a polynomial tensor basis, which is used for nonlinear eddy viscosity
models. Second, the scalar coefficient fields of the tensor basis are used as targets for the
deterministic symbolic regression. Finally, a simulation of the flow over periodic hills in
2D with the identified correction model will be conducted.

2 NON-LINEAR EDDY VISCOSITY MODELS

For RANS-based turbulence modelling commonly the adequate choice of the turbu-
lence model, e.g. k − ω or k − ε, is an essential requirement in order to achieve good
predictive performance. However, the constitutive relation between the strain of the
velocity field and the Reynolds-stress introduces model-form error which can’t be com-
pensated by changing the turbulent transport model leading to error-prone simulations.
Commonly used RANS turbulence modelling is based on a linear stress-strain relation-
ship, i.e. Boussinesq approximation, for the nondimensional anisotropic part bij of the
Reynolds-stress τij

bij =
τij
2k
− 1

3
δij (1)

bij = −Sij (2)

in which k is the turbulent kinetic energy, τ the turbulent time scale and Sij = τ 1
2
(∂jUi +

∂iUj) the normalised mean strain rate tensor. The latter represents the symmetric part
of the mean velocity gradient tensor ∂jUi and the normalised mean rotation tensor Ωij =

2
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τ 1
2
(∂jUi−∂iUj) the corresponding antisymmetric part. In [7] a more general eddy viscosity

model was derived based on bij = bij(Sij,Ωij) as a linear combination of ten base tensors

bij(Sij,Ωij) =
10∑
n=1

T
(n)
ij αn(I1, ..., I5), (3)

in which the coefficients αn are function of five invariants I1, ..., I5. The first four base
tensors T nij and two invariants Im read

T 1
ij = Sij, T

2
ij = SikΩkj = ΩikSkj,

T 3
ij = SikSkj −

1

3
δijSmnSnm, T

4
ij = ΩikΩkj −

1

3
δijΩmnΩnm, (4)

I1 = SmnSnm, I2 = ΩmnΩnm. (5)

The finite number of the base tensors can be attributed to the Cayleigh-Hamilton
theorem: Any higher order products of the two tensors Sij and Ωij can be represented by
a linear combination of this tensor basis. Given the base tensors the identification of the
functional form of the coefficients αn(I1, ..., I5) is the essential step to build a nonlinear
eddy-viscosity model. Classical methods to identify the functional forms are based on
projecting RSM onto the polynomial basis [7, 8]. In the following we will derive these
functions directly from data using deterministic symbolic regression.

3 DEFINITION OF TARGETS FOR SYMBOLIC REGRESSION

Following [2] we introduce an additive term b∆
ij to compensate the model-form error of

the Boussinesq approximation

τij = −2νtSij +
2

3
kδij + 2kb∆

ij . (6)

While the terms τij, k and Sij are available from databases of high-fidelity LES or
DNS simulations, the eddy viscosity νt can be identified by passively solving a turbulence
model, e.g. k−ω, for a given velocity field Ui and a modified production term Pk [2]. Thus,
for a given turbulence model and test case the model-form error b∆

ij can be identified and
serves as our primal target quantity. Following the rationale of nonlinear eddy viscosity
models, we use the tensor basis to find functional models representing the model-form
error. We first identify corresponding coefficients fields αn by minimising the l2-norm
between the model-form error b∆

ij and the tensor basis independently in each mesh point
k

αn,k = arg min
α̂n,k

 ∥∥∥∥∥
N∑
n

α̂n,kT
(n)
ij,k − b

∆
ij,k

∥∥∥∥∥
2

2

+ λα ‖α̂n,k‖2
2

 . (7)
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The solution of this optimisation problem is [9]

αn,k = (Mnm,k + λαδnm)−1sn,k, (8)

with

Mnm,k =


T

(1)
ij,kT

(1)
ij,k T

(2)
ij,kT

(1)
ij,k · · · T

(N)
ij,k T

(1)
ij,k

T
(2)
ij,kT

(2)
ij,k · · · T

(N)
ij,k T

(2)
ij,k

. . .
...

symm T
(N)
ij,k T

(N)
ij,k

 , sn,k =


b∆
ij,kT

(1)
ij,k

b∆
ij,kT

(2)
ij,k

...

b∆
ij,kT

(N)
ij,k

 , αn,k =


α1,k

α2,k

...

αN,k

 .
(9)
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Figure 1: Coefficient fields αn with n ∈ [1, 2, 3, 4] for flow over periodic hills in 2D at Reh = 10595 [10].

Ordinary least-square regression, i.e. λα = 0, leads to unphysical behaviour of large dif-
ferences of the parameter values for neighbouring mesh points and an overall high norm of
the scalar coefficient fields. While the identified coefficients lead to perfect reconstruction
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of the target b∆
ij,k, the coefficients are of low practical value for physical interpretation and

symbolic regression. An active regularisation parameter λα > 0 reduces the sensitivity of
the inversion to noise in the system and smoothens the resulting scalar coefficient fields
αn,k spatially. However, this also introduces bias which increases the reconstruction error.
Therefore a parameter study needs to be conducted to identify suitable values for λα.
For the test case of flow over periodic hills in 2D at Reh = 10595 presented in this work
the regularisation parameter was set to λα = 0.0001, which gave an acceptable global
mean-squared reconstruction error of εMSE = 0.002. The resulting coefficient fields αn for
four base tensors are presented in Figure 1.

4 DETERMINISTIC SYMBOLIC REGRESSION

The deterministic symbolic regression constructs an over-complete library of possible
nonlinear candidate functions and identifies the important ones by adopting a sparsity
constrain. Since the general form of our main target depends on the number of base
tensors, we will conduct a single symbolic regression for each αn,k with n ∈ [1, ..., 4].
Given a set of simple input features, i.e. the invariants I1 and I2, we build a library
matrix Bmk of nonlinear combinations of these simple input features. As a starting point
we build the candidates by taking the simple input features to a certain power, Ipm with
p ∈ [0.5, 1, 2], and by taking the product between each of the resulting functions, which
leads to functions of the form e.g. I0.5 or I1 · I2

2 . Also more complex operations can be
used leading to a larger library. Given the library of candidates, the optimisation problem
of the symbolic regression can be stated as

Θ(n)
m = arg min

Θ̂m

∥∥∥BmkΘ̂m − αn,k
∥∥∥2

2
+ λ

∥∥∥Θ̂m

∥∥∥
q
, (10)

in which the vector Θ
(n)
m needs to be identified. The target is a specific αn,k represented

by a column vector of size k containing all values of αn,k from each mesh point. The
regularisation term using norm q = 1 (LASSO) or q = 2 (RIDGE) acts to increase the

sparsity of Θ
(n)
m , i.e. increasing the number of zeros in order to turn off the corresponding

base functions [5, 6]. The result is the vector α̃n,k = BmkΘ
(n)
m , i.e. the discovered model,

in which Θ
(n)
m indicates which base functions are retained by assigning a non-zero value

to them. Based on mean LES data for the flow over periodic hills in 2D at Re = 10595
[10], using four base tensors N = 4 and two simple input features I1 to I2, from which
the library matrix is build, an identified model reads

MPH := (5.02 · I2 + 2.83 · I0.5
1 )T

(1)
ij

+ (57.38 · I0.5
1 − 152.98 · I1)T

(2)
ij

− (43.66 · I2 + 42.16 · I0.5
1 · I2 + 9.48 · I0.5

1 )T
(3)
ij

+ (7.20 · I0.5
1 − 33.52 · I1)T

(4)
ij . (11)
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Figure 2: Stream-wise velocity profiles at several downstream locations for the flow over periodic hills
at Re=10595.

The model uses per base tensor two to three candidate functions and is therefore of
similar complexity as models derived with GP in [11, 12]. In Figure 2 the stream-wise
velocity at several cross-sections is displayed for MPH and for a linear baseline simulation
M o using the linear k − ω model in comparison to the reference data [10]. Overall the
velocity prediction of MPH is closer to the reference data and especially the circulation
zone including the reattachment of the flow behind the hill is predicted more accurately.

5 CONCLUSION

In this paper it was shown that deterministic symbolic regression based on sparsity-
promoting regularisation can be used to identify nonlinear correction terms for the turbu-
lent stress-strain relation. The method was applied to the flow over periodic hills in 2D, a
challenging benchmark test case for RANS, and successfully identified a correction term
which led to a better velocity prediction. Also the mathematical complexity is similar
to models present in literature derived or identified with other means. This promising
first result is limited by the fact that both the identification of the model as well as the
prediction is done on the same test case. Further research will both focus on identifying
models for different test cases and Reynolds-numbers as well as validation of the predictive
performance of the models when applied to other test cases.
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