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Abstract. The increase of the fracture resistance of a layered structure by adding weak
layers is examined through a finite element model containing two cracks. The cracks are
modelled as cohesive zones. The cohesive law parameters, such as the critical opening
relative to the specimen size, introduce scale effects. It is shown that a maximum increase
of the fracture resistance can be attained for certain cohesive law parameters even when
the distance between the two cracks is relative large relative to the structure dimensions.

1 INTRODUCTION

Through-thickness stresses can cause initiation and propagation of interlaminar cracks
which may lead to a decrease of the structural integrity of a composite component [1]. An
example is cracks initiated at ply-drops in wind turbine blades. A number of techniques
have been developed to increase the fracture resistance of composites by making the
damage prone areas stronger or tougher. This is achieved by using tougher matrices
[2, 3], modifying the fibre/matrix interface [4, 5], using interleaving concepts [6, 7] or by
modifying the fibre architecture e.g. z-pinning [8].

An alternative approach to increase the fracture resistance was proposed by Goutianos
and Sørensen [9]. The fracture resistance is increased by introducing weak planes next
to the damage prone areas and thus allowing the initiation and propagation of multiple
cracks as shown in Fig. 1 for the case of two cracks. This approach was motivated
by the experimental work of Rask and Sørensen [10] who observed, in testing Double
Cantilever Beam (DCB) specimens, that a change of the ply thicknesses of the glass
fibre/polyester composite beams bonded together with an adhesive, more delamination
cracks could develop next to the adhesive/laminate crack. In these experiments, the
steady-state fracture resistance was found to increase proportionally to the number of
secondary (delamination) cracks, suggesting that a linear relationship may exist between
the number of crack tips/fracture process zones and the steady state fracture resistance.
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Figure 1: Delamination of a weak layer (secondary crack)at a distance h from the primary crack. δ∗,1n

is the normal end-opening of the primary crack, δ∗,2−n and δ∗,2+n the normal end-openings of the right
and left hand side crack tips of the secondary crack. The corresponding tangential end-openings of the
primary and secondary cracks are δ∗,1t , δ∗,2−t and δ∗,2+t .

In the present work, the possibility of increasing the fracture resistance of a layered
structure by introducing weak planes (resulting in multiple delaminations) next to a
damage prone area is further investigated by exploring the effects of the cohesive law
parameters. It should be noted that in many layered structures such as fibre composite
materials [5] or adhesive joints [11], crack growth/delamination involves large scale fibre
bridging and thus the problem cannot be analysed by linear elastic fracture mechanics.

2 BACKGROUND

The mechanism of multiple delaminations formation of Fig. 1 was analysed in Goutianos
and Sørensen [9] for two cracks/delaminations. Using the path independent J integral [12],
it was shown that the J integral along a local path enclosing the primary and secondary
crack, see Fig. 2, is:

Jloc = J1
loc + J2−

loc + J2+
loc (1)

where if the primary crack is fully developed then J1
loc = J1

ss. If the right hand side sec-
ondary crack is fully developed then, J2+

loc = J2
ss. Similarly, if the left hand side secondary

crack is fully developed, J2−
loc = J2

ss. If it is assumed, that the left hand side of the crack
tip of the secondary crack does not open, then J2−

loc = 0, and thus:

Jloc = J1
loc + J2+

loc = J1
ss + J2

ss (2)

which shows that the steady fracture resistance, JR,ss, is increased by J2
ss. Eq. 2 can

be generalised to n secondary/delaminations cracks:

Jloc = J1
ss + nJ2

ss (3)

If left hand side of the secondary crack is fully developed, then Eq. 1 gives that
Jloc = J1

ss e.g. there is no increase in the steady state fracture resistance.
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Figure 2: Local J integral path enclosing the primary and secondary crack.

3 NUMERICAL MODEL

3.1 Geometry and loading

The crack growth problem of Fig. 1 is modelled by the finite element method using the
commercial code Abaqus (version 2017) as a plane strain problem (see Fig. 3). The right
hand side is fully constrained (u1 = u2 = 0 at x1 = L− ℓ). Pure bending is applied to the
left hand side beams by prescribing rotational displacements of two points, which are tied
to two analytical rigid surfaces tied to the beams of the specimen. The two beams are
modelled as plane strain isotropic linear-elastic solids. Four-node elements and triangular
three-node reduced integrations elements are used in order to control the mesh transition
from the small size elements in the cohesive zone to larger elements far away from the
cohesive zones.

An explicit solver is used to solve the problem under quasi-static conditions using mass-
scaling [11]. In the solution procedure, viscous damping is also necessary for convergence.
In all simulations, it is ensured that the sum of the kinetic energy and the energy dissipated
by viscosity is less than 0.5% of the strain energy.

The J integral evaluated along the external boundaries, under plane strain conditions
and mixed-mode loading, is [13]:

Jext = (1− ν2)
21(M2

1 +M2
2 )− 6M1M2

4B2H3E
(4)

where H and B are the height and width of the specimen, E and ν are the Youngs’
modulus and Poisson’s ratio of the beams and the moments M1 and M2 applied to the left
hand cracked ends of the beams. The moments M1 and M2 are extracted from the finite
element solution for each increment. Eq. 4 is valid only as long as the secondary crack
remains away from the left hand end of the beam so that the beams ends are subjected
to pure bending. As can be seen from Eq. 4 the J integral equation is independent of
the crack length. Thus, by extracting the moments from the finite element solution, the
fracture resistance, JR, given by the J integral can be directly evaluated.

3.2 Cohesive zone modelling

The potential planes for the primary and secondary cracks are modelled with cohesive
elements of finite thickness corresponding to 0.1% of H (see Fig. 3) to avoid interpene-
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Figure 3: Geometry, loads and boundary conditions of the finite element model. The potential cracking
planes (for the primary and secondary cracks) are modelled with cohesive zones.
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Figure 4: Mode I and mode II linear softening cohesive laws for the primary (i=1) and secondary crack
(i=2).

tration of the two surfaces adjacent to the cohesive elements. The cohesive zone of the
potential secondary crack plane extends along the entire length the specimen, L, allowing
thus crack growth behind the initial notch (primary crack).

The cohesive laws have a bilinear shape as can be seen in Fig. 4, which shows the
pure normal and shear cohesive laws for each crack where σi

n and σi
t are the normal and

shear tractions (i = 1: primary crack and i = 2: secondary crack), δn and δt the normal
and tangential openings. The cohesive laws have initial rising parts with stiffness Ki

n

and Ki
t for the primary and secondary cracks which are assigned high values (Ki

nH/E =
Ki

tH/E = 2.5 × 10−3) to practically have linear softening cohesive laws with minimum
opening prior to crack opening.

Although the external applied loading corresponds to pure mode I crack opening, the
presence of the secondary crack introduces tangential openings to both the primary and
secondary crack. Following the mixed-mode cohesive zone model of [14], it is assumed
that the normal and shear cohesive laws are uncoupled. A weak coupling is introduced
through a failure criterion:

Fcr =
W i

n

J i
n,ss

+
W i

t

J i
t,ss

= 1, i = 1 or 2 (5)

where J i
n,ss and J i

t,ss are the mode I and mode II steady state fracture resistances for the
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primary (i = 1) and for the secondary crack (i = 2). The work of the cohesive tractions
(shaded area in Fig. 4) are denoted Wn and Wt for the normal and shear tractions,
respectively. With the uncoupled cohesive law chosen, Wn and Wt depend only on δ∗n and
δ∗t , respectively.

The cohesive law is implemented in a user defined material subroutine. Since, a basic
assumption of the analytical model [9] is that the left hand side of the secondary crack
can unload, the unloading behaviour is also implemented and is is shown with dotted lines
in Fig. 4.

4 RESULTS AND DISCUSSION

Fig. 5 shows the steady state fracture resistance for a specimen with two cracks as a
function of the distance between the two cracks, h, for different ratios of the normal peak
traction of the secondary crack to the normal peak traction of the primary crack, σ̂2

n/σ̂
1
n.

For both cracks a) the pure mode II cohesive law is identical to the pure mode I cohesive
law and b) J1

n,ss and J2
n,ss. For all cases plotted in Fig. 5, J1

n,ss/(EH) = 2.5E−6. When
the secondary crack is at a small distance from the primary crack (h/H < 0.4), then
the steady state fracture resistance is close to the analytical solution of Eq. 2, e.g. the
steady state fracture resistance is the sum of the steady state fracture resistances of the
two cracks. This maximum positive contribution from the secondary crack occurs when
the peak traction is of the secondary crack is close but smaller to the peak traction of
the primary crack. When the peak traction of the secondary crack is less than half the
peak traction of the primary crack, then the analytical solution of Eq. 2 is achieved only
for small distances h e.g. h/H < 0.2. In all cases, when the two cracks are relatively
apart from each other (h/H < 0.6), then the fracture resistance does not reach its upper
theoretical limit (Eq. 2) due to the negative contribution from the left hand side crack
tip of the secondary crack [9]. When, the peak traction of the secondary crack is larger
than the peak traction of the primary crack, then the secondary crack does not open and
the steady state fracture resistance is equal to the steady state fracture resistance of the
primary crack.

The results of Fig. 5 show that it is feasible to increase the fracture resistance of a
layered structure significantly by adding weak layers as long as the cohesive law parameters
of the weak layers are within certain ranges compared to the cohesive law parameters of
the primary crack. However, the maximum positive effect of the secondary crack occurs
only when the secondary crack is at a short distance from the primary crack. In many
practical cases, such as in composite structures, it may be difficult to introduce a weak
layer at a small distance h due to geometrical constraints such as lamina thickness. Thus,
it is important to examine if it is possible to increase the fracture resistance even when
the weak layer is relatively far apart from the primary crack.

Next in Fig. 6, the cohesive law parameters of the primary crack are also varied. More
specifically, the mode I peak traction is increased whereas the mode I steady state fracture
resistance is kept constant compared to the cohesive law parameters of the primary crack
in Fig. 5, J1

n,ss/(EH) = 2.5E−6. By increasing the mode I peak traction and keeping the
steady state fracture resistance constant, the mode I critical opening decreases e.g. the
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Figure 5: Steady state fracture resistance, JR,ss, as a function of a distance between the two cracks h
for different peak traction ratios of σ̂2

n/σ̂
1
n. The mode II cohesive law is identical to the mode I cohesive

law for each crack. σ̂1
n/E = 5.0E − 5.

critical opening is decreases relatively to H. In Fig. 6, the steady state fracture resistance
is shown as a function of the ratio of the mode II peak traction of the secondary crack to
the mode I peak traction of the primary crack when the two cracks are far apart from each
other (h/H = 0.1). For this distance, the increase of the steady state fracture resistance
was only up to 20% when σ̂1

n/E = 5.0E − 5 (see Fig. 5). It should be mentioned that
in the results of Fig. 6, the mode II cohesive law of the primary crack is identical to
the mode I cohesive law of the primary crack. Similarly, the mode II cohesive law of
the secondary crack is identical to the mode I cohesive law of the secondary crack. It
can be seen that increasing the mode I peak traction of the primary crack results in a
significant increase of the fracture resistance for a wide range of ratios of the mode I peak
traction of the secondary crack to the mode I peak traction of the primary crack. When
σ̂1
n/E = 5.0E − 4, then the steady state fracture resistance reaches the upper theoretical

limit given in Eq. 2.
The implication of the results of Fig. 6 is that it is feasible to increase the fracture

resistance when the weak layer is relatively far apart from the primary crack, only if the
cohesive law parameters of the primary crack are within certain ranges compared to the
specimen dimensions. This implies that it may be necessary first to modify the cohesive
law parameters of the primary crack (damage prone area) and secondly design/modify
the cohesive law parameters of the weak layer relatively to the primary crack.
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Figure 6: Steady state fracture resistance, JR,ss, as a function of a .

5 CONCLUSIONS

Cohesive zone modelling, consisting of a primary and a secondary crack, was used
to demonstrate that it is possible to significantly increase the fracture resistance of a
layered structure by adding weak layers. It was shown that by selecting the cohesive law
parameters of the secondary crack within certain ranges, a linear dependency between the
number of cracks and the steady state fracture resistance can be achieved in accordance
to theoretical predictions. This linear dependency also holds when the two cracks are far
apart for certain ranges of the cohesive law parameters of both the primary and secondary
crack.
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