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Abstract. For the forces method development in the nonlifiedd the generalized More’s
formula with tangent stiffness matrix has been imgd. This matrix was obtained as the
integral parameter of the stress-strained conditbrthe whole cross-section rod points.
Formulation of the finite elements method is coesd as a movement method and a forces
method. The advantages and disadvantages of thdotws of the FEM in elastic-plastic
analysis noted. It is proposed to form the proceddircalculating bending rod systems via the
force method based on the bending moments formhbiiarsing state equations.

There is shown the key differences and advantagesleulation of rod systems by the
discrete-analytical method. The results of caleoadf rod systems obtained by the discrete-
analytical method with the finite element method eompared. The proposed method allows
to obtain adequate results without significant pesor and time consuming.

1 INTRODUCTION

In modern engineering practice it's often required solve tasks connecting with a
determination of elastoplastic deformations. Nowadéa is possible to complete a nonlinear
analysis only by using powerful computer prograrmasda on application of the finite element
method (FEM). While solving nonlinear tasks, corimgr with analysis of elastoplastic
process in constructions, by using the finite eletmaethod the processing time increases
acutely, that is often unacceptable in project dooas.

In most cases for calculation of building structtire rod systems, covering a wide range
of engineering tasks, are used. For such kind etesys it is possible to calculate the
elastoplastic tasks via generalization of classieathods of construction mechanics — force
method and displacement method. This generalizatiesives the using of an explicit time-
based computational scheme and the determinaticeaet step of the system tangential
stiffness. The approach based on the generalizéldoch@f forces (generalized displacement
method) allows drastically reduce the time for sajv elastoplastic tasks.

The aim of this research was to develop a disae#dytical method for calculating rod
systems in the nonlinear area. Calculation algor#t for plane and spatial rod systems are
proposed. The calculation results are compared MEiH.
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The scientific rationalization and difference frahe finite element method (FEM) are in
the exclusion of finite elements during making dgebraic equations’ system and their
substitution by the sections on which the dispensiiffness parameters are integrated. As a
result, the number of system equations will coroespto the number of static (or kinematic)
indeterminations of the rod system. Moreover if thé system is statically determined there
is no need to solve the equations’ system. In ¢hse any stiffness parameters allocation
along the rod’s length is considered using the datigl stiffness matrix and generalized
More's formula. Obtained hybrid scheme, in a waan e compared with the boundary
element method. However the integration shoulddmepteted here not across the entire area,
but within the long element-rod. The nonlinear akltion algorithm by the discrete-
analytical method for determination of internaldes in nodes of statically indeterminate rod
system will be considered further. Herein a prefeeeis given to the displacement method
due to the simplicity of the main system choicee tivay of equilibrium equations
construction, compilation of the stiffness matrimdathe external loads vector. The force
method with the generalized More’s formula joindse used to determine the rod stiffness
coefficients, in consideration with the nonlineatian.

The force method has not yet been realized inrmidhsure due to the difficulties in the
making of canonical equations of deformation contgay for the system as a whole.
Herewith there is an undeniable advantage in thesaal force method due to the lack of
necessity to determine the rod local stiffness malmnitially it was supposed to use the force
method to improve the efficiency of nonlinear as@y According to research it turned out
that FEM form in form of displacement method forexmore preferably for a particular
stepper method. It is proposed to consider the pmd cons of two FEM forms in
elastoplastic analysis.

Advantages of the forces method:

- an accuracy of stresses’ determination;
- a direct creation of flexibility matrix;
- account of absolutely rigid rods.
Disadvantages of the forces method:
- more unknowns at rigid several rods’ connection;
- additional expressions are needed to determihenfwements;
- difficulties in making an equations’ system amda@unting for the geometric nonlinearity.
Advantages of the displacement method:
- less amount of unknowns at rigid rods’ connection
- natural mechanism of making a resolving equatisystem;
- direct getting of displacement in solving the aions’ system;
- accounting for the geometric nonlinearity.
Disadvantages of the movement method:
- inaccuracy in stresses’ determining as they ecersdary;
- complexity in accounting for absolutely rigid s3d
- necessity to determine the interim stiffness maBut due to the rod stiffness matrix is
available to determine through the shape functibissnot necessary to calculate an interim
equations system to determine the stiffness caeffis in the nodes.

Theoretically a new resolving equations’ systenthia form of the forces method should

be obtained based on Castigliano’s variational epticbut there are some difficulties
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appeared in practice and it is necessary to devalgpecial mechanism for making this

system. Thus, the most appropriate way to optim@dinear analysis is a hybrid approach in

which the FEM in displacement method form is usedétermine the internal forces in the

long rod nodes, to account for the distributionirdkernal forces along the rod’s length —

integral analytical expressions. In this case thal elements are replaced by integration parts
thereby leading to a significant calculation accaien. It is proposed to consider this method
thoroughly.

2 GENERAL RELATIONS

2.1 PLANE FRAMEWORK

It is proposed to consider a hybrid method for deibeing elastoplastic deformations in
rod systems. The nonlinear analysis scheme cormdighe following steps:

- determination of the rod’s stiffness matrix calesing the distributed parameters in
length, using the generalized More’s formula;

- bringing a stress distribution to the nodes aechlculation in level with geometric
nonlinearity;

- making an equations’ system for determining tlov@ments in the rods’ nodes;

- reactions’ determination of the rods’ nodes;

- definition of the function of the internal stresschanges in curved rods’;

- stresses’ determination in the integration poursisg the generalized curvature;

- definition of the function of the movements’ clgas along the rod’s length;

- definition of the tangent stiffness matrix, délsitrg the stiffness in the rods’ cross
section.
For the plane task, the tangent stiffness matrix lwa defined using integral function of the
cross-section’s state law [1, 2]. There is shownorenula for determining the shear stiffness
of a rectangular section [3]:
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where& — deformation corresponding to the yield strength; yield strengthy — the rod’s
curvature in the considered cross sectmm — parameters of rectangular cross secttn;-
tangent (plastic) modulus of elasticity.
Inasmuch the shift movement is ignored here, thésrstiffness matrix can be obtained
via form functions (Fig. 1)
3 23 2x% X
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Figure 1. Degrees of freedom

Differentiating the potential deformation energyrhgvements, a formula for determining
the stiffness matrix of the bending rod elememtatained:
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Replacingel with T(t) and entering under the integral sign. Consideltiegaxial stiffness

coefficients, a formula for determining the stifisematrix on step by the form functions is
obtained.
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whereF — sectional ared;— the moment of cross section’s inertia.

Bringing the stress distributignto equivalent on step

(6)
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After the stiffness ratios; have been determined the stiffness matrix in thebajl
coordinate system is defined in the ordinary wagaath step. The stiffness ratios converging
in the rods’ node are combained. Then in incremdotan for stress increasing at step the
equations of the finite element method are soleedife system as a whole and the moments’
increments in sections are definsel(x).

The increments definition of curvature along thdsrtength:

Bx(x) = %T()X) ’ 8)

The deformation definition in extreme fibers:
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~ h
Ag(x) = AX(X)E' ©)
The stress and deformation definition at step:
s(x) = s(x) + As(x) (10)
_ 0(x)+ Ep|A8(X),T >1
o) = { o(x)+ EAg(x),t<1 )

Further a new local stiffness matrix of the rochedat is developed via the integration (6),
considering the change in stiffness in the crosties® And the cycle repeats.
The geometric nonlinearity record can be done uingulas [2]:

u(x) = Jx(x) Ckdx, (12)
o) = [k a3
x =co$8) %, . (14)

2.2 SPATIAL FRAMEWORK

The forces method was used to calculate the sgedimlework during the stiffness matrix
obtaining, considering the shear displacements.t@ihgent stiffness matrix in conditions of
elastoplastic deformation with shear displacemmsntietermined by the formula [4, 5]:

[r]=[_[L]AlskF . as)
n 0 0]
-&€ 0 O ol . . £ 0100
O — 11 12 13 - (16)
[L] = 1 Z On , [A] = I:azl ay azal , [S] :{ g 0O 00O 1} ,
0 1 0 831 83 ag3 -n 0 0010
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where A — matrix with pseudoelastic ratios describing tdmmnection egiuations between
stress and deformation [5§ — matrix with section coordinatégig. 2) for the connection
egiuations between the deformation velocity ancekiatic parameters [4]; — transition
matrix from stresses to internal forces:

jF [L{oldF = {aa—'\t"} ,
{200} <o}

(17)

(18)
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whereM1,M,,M3,Q1,Q,,Q3 — vectors componentd andQ in the coordinate systedn, &.
N. 63, &;
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Figure 2: Coordinates of section

The generalized More’s formula is written for deteration of displacements at time step.

-l o o T 22 -
| , (21)

ol [l {5 o
[Ue] = [M e Mg Mg Qe Qy Q3e] , (22)
[‘P] = |:X1 Xz X3 a_\:(v V3 _Vz :lT ) (23)

whereMg, ..., Qe,... — the vectors components of the moments andnialtéorcesMe, Qe in
the coordinate systef) ), ¢ from the application of a single force and a snglomentyem—
the matrix-line with a single momen;x/ot— the changes vector in time of the generalized
curvaturesy ,, Y 3 —the shear velocity cross-secti@any/dx — velocity in axial direction.

Using a generalized More’'s formula, the flexibilitpatrix for cantilever beam is
determined by formula:

o]= fuJfr ] o] o, e

6 equations systems with dimension 6x6 are solvaduglly via forces method, changing
single movement directiods

CAECR S o

Considering the symmetry, the rod’s stiffness miakf is obtained at step dimension
12x12. Then the system stiffness matrix is maderdmary way. As a result of solving the
resolving equations system, the movements in #imadwork nodes will be obtained:
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) (26)
{o}=[k]™{r}.
The movement of each rod nodes in global axes:
o} - e ). o

The movement of rod nodes in the local coordingstesn using a transformation matfxs
determined via formula:

oo} = [l 0
Reactions in the rod nodes are determined via flarmu
= el =

m_Wﬂ4W‘M2Mﬁ}
PN = :
s {bﬂzh?QScxr

It is written the expressions for functions of imi@l forces and moments change, using:(30)

M)t = [x{r(sh-{m "} (31)
fee(xf={en}. o

(30)

and it is presented as a vector:

fepad=[Me0d M6 M3k Q) Qs Q5 33)
Then it is defined the rod section curvature viarfola:

-l 9

As a result, it is obtained a stress vector desgilthe stress state at each point of the rod
section at the time step:

o)< (s} o
{ce}: [0, 0, o] . >
01=0¢7:02=Tnz,03 =Tz - (37)

For the stress state in the rog, = 0z = 1¢, = 0.
Transitions from elastoplastic stress to elastie and back are determined by logical
conditions:
- elastic stress?um< 0%
- elastoplastic stresEsum> 0% , do%eum/dt >0

02,, =02 +303% +302. (38)

Via o; the value of the total stress at the beginninthef-th semicircle of elastic loading is
indicated (ift = 1, thato; will be equal the yield strengthy).
Matrix componentsS depend on coordinates of considering rod sectioimtp Matrix
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componentsA depend on stress at section point at each time. fduring elastoplastic
deformation the matrixA corresponds to the differential analogue of HooKals with
pseudoelastic ratios depending on the stress statéhe point [5]. When creating
computational algorithms at each time step, thevaim@ntioned formulas are written as
incremental ratios.

Write down expressions for determining the stifBiegtios of the rod taking into account
the geometric nonlinearity.

The function of changes in internal stress:

{ee(=1{onfxfelx}- (39)

Unit vector:
felx) = {dg;)}_ “0)
Radius-vector:
(41)
(= {0 e
{drd_(tX)} = l[uae2e3 ]{‘-IJ}dX (42)
The angular velocity and the rotation angles:
| (43)
j [Uelmezmesm ]{W}dx
{0} ={on (W} "
{oh=[a B v]T , (45)
(e ={cost} . o)

Further a new local stiffness matrix of the rodned@t is made using the generalized
More’s formula.

3 RESULTS COMPARISON WITH FEM

The programs for the flat and spatial rod systemeveeeated for checking the developed
mathematical model (Fig. 3). Separate program Isldok flat rod system are given in [2].
The calculation results were compared with thetdirelement method in ANSYS. The
automatic time step feature has been disabledfdllesving initial data were accepted in the
task:

- elastic modulug = 2,110 Pa;

- the tangent elastic modulis = 2,110'°Pa;
- Poisson’s ratiw = 0,3;

- yield strengthos = 240MPg;

- square section width=0,1 m;l =1 m,;
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- forceF = 1010° N.

As the developed mathematical model takes intowatdcthe stress distribution over the
cross-section area, so in ANSYS the rod crosseseetas divided into 20 sites by height and
width. The number of finite elements on the rod@. For the discrete-analytical method
calculation the rod was given 100 sites of intagratThe nonlinear calculation was carried
out in 20 steps. Calculation results are shownign4; 5.

i
O

/2

Figure 3: Analytical scheme of: a) a plane frame; b) aigp&tame

NCODAL SCLUTICN

STEP=1

SUB =20
TIME=1

SEQV (BVE)
[MX =.050001
SMT =953.977
SMYX =.331F+09

953.977 L 136E+08 L 14TE+09 L221E+09 L 294E+09
L 368E+08 L110E+09 L 184E+09 25TE+09 L331E+09

Figure 4. Stress distribution in a plane frame

Table 1: Plane frame (fisical nonlinearity)

Parameter DANA FEA (B188) &, %
o, MPa 345 343 0,6
A, m 0,0553 0,0555 0,4

t, C - 86 -
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Table 2 Plane frame (geometrical nonlinearity)

Parameter DANA FEA (B188) &, %

o, MPa 358 331 8
A, m 0,054 0,0500 8
t, Cc - 90 -

Table 3. Spatial frame (fisical nonlinearity)

Parameter DANA FEA (B188) &, %

o, MPa 408 406 0,5
A, m 0,094 0,09417 0,2
t, Cc - 86 -

Table 4 Spatial frame (geometrical nonlinearity)

Parameter DANA FEA (B188) &, %

o, MPa 440 415 6
A, m 0,105 0,09903 6
t, C - 90 -
AN

NCDAL SOLUTICN

STEP=1

SUB =20

TIME=1

SEQV (AAG)

DMK =.099%025

SMY =79571.1

SMY =.415E+09

I I
79571.1 924E+08 185E+0

: .185E+09 7TIEN09
AB2EH08 L 139E+09 231E+09

9 L369E+0
.323E+08

9.415E+09
Figure 5: Stress distribution in a spatial frame

The comparison of obtained results with PC ANSYfiected a satisfactory coincidence
both at stress and at movements (Tab. 1-4). &gaired 90 s of computer time to calculate by
finite element method in case of one processor loading (2,3 GHz).
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If the section is not divided into elementary sif@esn the deviation from exact solution can
achieve 15-20% as a result of incorrect transifiom elastic to plastic zone of the diagram
0-¢ by the cross-sectional area. During the rod dngdinto 10 finite elements and using
default setting of the ANSYS program the deviafimm the exact solution was 15%.

It took less than 1 second for calculating via dewed hybrid method. This fact is
occurred because number of equations in the syistenual to the static uncertainty data, i.e.
less than in the finite element method. In casaafeasing the number of integration sites,
the solution tends to be accurate without significame costs.

4 CONCLUSIONS

The proposed discrete-analytical method allowsi¢togase the accuracy in determining the
stresses in framework and significantly reducetime of elastoplastic calculation. The key
features and main advantages of discrete-analytmalinear analysis in comparison with the
finite element method are worth noting.

The key features:

- a generalized More’s formula with a tangentialfsifiss matrixs proposed to determine the
rod movements, which characterizes the stressataléthe rod section points;

- the use of the generalized More’s formula withiatale rigidity along the rod length allows
to exclude finite elementdong the rod;

- to calculate statically indeterminate systemsyharid FEM in the form of a displacement
methods used with analytical expressions for the rodtjgi

The main advantaged:

- the use of the tangential stiffness matrix allé@gcrease the accuraayf determination of
elastoplastic deformatiom the rods;

- the proposed method allows reduce the calculation tima&t use theexplicit and implicit
numerical integration schem&splemented in powerful software packages baseEv.

- by exclusion of finite elements the time of caddtion of differential equations motion systems by
direct methods will be significantly reducednsidering the nonlinear structure behavior.
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