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Abstract. For the forces method development in the nonlinear field the generalized More’s 
formula with tangent stiffness matrix has been invented. This matrix was obtained as the 
integral parameter of the stress-strained condition of the whole cross-section rod points. 
Formulation of the finite elements method is considered as a movement method and a forces 
method. The advantages and disadvantages of the two forms of the FEM in elastic-plastic 
analysis noted. It is proposed to form the procedure of calculating bending rod systems via the 
force method based on the bending moments formation by using state equations. 
There is shown the key differences and advantages at calculation of rod systems by the 
discrete-analytical method. The results of calculation of rod systems obtained by the discrete-
analytical method with the finite element method are compared. The proposed method allows 
to obtain adequate results without significant processor and time consuming. 
 
1 INTRODUCTION 

In modern engineering practice it’s often required to solve tasks connecting with a 
determination of elastoplastic deformations. Nowadays it is possible to complete a nonlinear 
analysis only by using powerful computer programs based on application of the finite element 
method (FEM). While solving nonlinear tasks, connecting with analysis of elastoplastic 
process in constructions, by using the finite element method the processing time increases 
acutely, that is often unacceptable in project conditions. 

In most cases for calculation of building structure the rod systems, covering a wide range 
of engineering tasks, are used. For such kind of systems it is possible to calculate the 
elastoplastic tasks via generalization of classical methods of construction mechanics – force 
method and displacement method. This generalization involves the using of an explicit time-
based computational scheme and the determination at each step of the system tangential 
stiffness. The approach based on the generalized method of forces (generalized displacement 
method) allows drastically reduce the time for solving  elastoplastic tasks. 

The aim of this research was to develop a discrete-analytical method for calculating rod 
systems in the nonlinear area.  Calculation algorithms for plane and spatial rod systems are 
proposed. The calculation results are compared with FEM. 
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The scientific rationalization and difference from the finite element method (FEM) are in 
the exclusion of finite elements during making an algebraic equations’ system and their 
substitution by the sections on which the dispensing stiffness parameters are integrated. As a 
result, the number of system equations will correspond to the number of static (or kinematic) 
indeterminations of the rod system. Moreover if the rod system is statically determined there 
is no need to solve the equations’ system. In this case any stiffness parameters allocation 
along the rod’s length is considered using the tangential stiffness matrix and generalized 
More's formula. Obtained hybrid scheme, in a way, can be compared with the boundary 
element method. However the integration should be completed here not across the entire area, 
but within the long element-rod. The nonlinear calculation algorithm by the discrete-
analytical method for determination of internal forces in nodes of statically indeterminate rod 
system will be considered further. Herein a preference is given to the displacement method 
due to the simplicity of the main system choice, the way of equilibrium equations 
construction, compilation of the stiffness matrix and the external loads vector. The force 
method with the generalized More’s formula jointly are used to determine the rod stiffness 
coefficients, in consideration with the nonlinear action. 

The force method has not yet been realized in full measure due to the difficulties in the 
making of canonical equations of deformation compatibility for the system as a whole. 
Herewith there is an undeniable advantage in the classical force method due to the lack of 
necessity to determine the rod local stiffness matrix. Initially it was supposed to use the force 
method to improve the efficiency of nonlinear analysis. According to research it turned out 
that FEM form in form of displacement method form is more preferably for a particular 
stepper method. It is proposed to consider the pros and cons of two FEM forms in 
elastoplastic analysis. 

Advantages of the forces method: 
- an accuracy of stresses’ determination; 
- a direct creation of flexibility matrix; 
- account of absolutely rigid rods. 

Disadvantages of the forces method: 
- more unknowns at rigid several rods’ connection; 
- additional expressions are needed to determine full movements; 
- difficulties in making an equations’ system and accounting for the geometric nonlinearity. 

Advantages of the displacement method: 
- less amount of unknowns at rigid rods’ connection; 
- natural mechanism of making a resolving equations’ system; 
- direct getting of displacement in solving the equations’ system; 
- accounting for the geometric nonlinearity. 

Disadvantages of the movement method: 
- inaccuracy in stresses’ determining as they are secondary; 
- complexity in accounting for absolutely rigid rods; 
- necessity to determine the interim stiffness matrix. But due to the rod stiffness matrix is 
available to determine through the shape functions it is not necessary to calculate an interim 
equations system to determine the stiffness coefficients in the nodes. 

Theoretically a new resolving equations’ system in the form of the forces method should 
be obtained based on Castigliano’s variational concept, but there are some difficulties 
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appeared in practice and it is necessary to develop a special mechanism for making this 
system. Thus, the most appropriate way to optimize nonlinear analysis is a hybrid approach in 
which the FEM in displacement method form is used to determine the internal forces in the 
long rod nodes, to account for the distribution of internal forces along the rod’s length – 
integral analytical expressions. In this case the final elements are replaced by integration parts 
thereby leading to a significant calculation acceleration. It is proposed to consider this method 
thoroughly. 

2 GENERAL RELATIONS 

2.1 PLANE FRAMEWORK 

It is proposed to consider a hybrid method for determining elastoplastic deformations in 
rod systems. The nonlinear analysis scheme consists of the following steps: 

- determination of the rod’s stiffness matrix considering the distributed parameters in 
length, using the generalized More’s formula; 

- bringing a stress distribution to the nodes and recalculation in level with geometric 
nonlinearity; 

- making an equations’ system for determining the movements in the rods’ nodes; 
- reactions’ determination of the rods’ nodes; 
- definition of the function of the internal stresses changes in curved rods’; 
- stresses’ determination in the integration points using the generalized curvature; 
- definition of the function of the movements’ changes along the rod’s length; 
- definition of the tangent stiffness matrix, describing the stiffness in the rods’ cross 

section.  
For the plane task, the tangent stiffness matrix can be defined using integral function of the 
cross-section’s state law [1, 2]. There is shown a formula for determining the shear stiffness 
of a rectangular section [3]: 
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where εs  – deformation corresponding to the yield strength, σs – yield strength, χ – the rod’s 
curvature in the considered cross section, b, h – parameters of rectangular cross section; Epl – 
tangent (plastic) modulus of elasticity. 

Inasmuch the shift movement is ignored here, the rod’s stiffness matrix can be obtained 
via form functions (Fig. 1) 
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Figure 1: Degrees of freedom 

Differentiating the potential deformation energy by movements, a formula for determining 
the stiffness matrix of the bending rod element is obtained: 
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Replacing EI with T(τ) and entering under the integral sign. Considering the axial stiffness 
coefficients, a formula for determining the stiffness matrix on step by the form functions is 
obtained. 
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where F – sectional area; I – the moment of cross section’s inertia.                                 
Bringing the stress distribution p to equivalent on step 
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After the stiffness ratios kij have been determined the stiffness matrix in the global 
coordinate system is defined in the ordinary way at each step. The stiffness ratios converging 
in the rods’ node are combained. Then in incremental form for stress increasing at step the 
equations of the finite element method are solved for the system as a whole and the moments’ 
increments in sections are defined ∆M(x). 

The increments definition of curvature along the rods length: 

( ) ( )
( ) ,

T

xM
x

τ
∆=χ∆  

 

(8) 

The deformation definition in extreme fibers: 

1 
2 

3 

4 
5 

6 



V. Meleshko, Yu. Rutman 

  

( ) ( ) .
h

xx
2

χ∆=ε∆  
 

(9) 

The stress and deformation definition at step: 
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Further a new local stiffness matrix of the rod element is developed via the integration (6), 
considering the change in stiffness in the cross-section. And the cycle repeats.  

The geometric nonlinearity record can be done using formulas [2]: 
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2.2 SPATIAL FRAMEWORK 

The forces method was used to calculate the spatial framework during the stiffness matrix 
obtaining, considering the shear displacements. The tangent stiffness matrix in conditions of 
elastoplastic deformation with shear displacements is determined by the formula [4, 5]: 
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where A – matrix with pseudoelastic ratios describing the connection eqiuations between 
stress and deformation [5]; S – matrix with section coordinates (Fig. 2) for the connection 
eqiuations between the deformation velocity and kinematic parameters [4]; L – transition 
matrix from stresses to internal forces:  
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where M1,M2,M3,Q1,Q2,Q3 – vectors components M and Q in the coordinate system ζ, η, ξ. 

 

Figure 2: Coordinates of section 

The generalized More’s formula is written for determination of displacements at time step. 
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where M1e,…, Q1e,… – the vectors components of the moments and internal forces Me, Qe in 
the coordinate system ξ, η, ζ from the application of a single force and a single moment; uem – 
the matrix-line with a single moment; ∂’χ/∂t– the changes vector in time of the generalized 
curvatures; γ’2, γ’3 – the shear velocity cross-section; ∂w/∂x – velocity in axial direction. 

Using a generalized More’s formula, the flexibility matrix for cantilever beam is 
determined by formula: 
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6 equations systems with dimension 6x6 are solved gradually via forces method, changing 
single movement directions ∆e 
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Considering the symmetry, the rod’s stiffness matrix Ke is obtained at step dimension 
12x12. Then the system stiffness matrix is made in ordinary way. As a result of solving the 
resolving equations system, the movements in the framework nodes will be obtained: 
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The movement of each rod nodes in global axes:  
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The movement of rod nodes in the local coordinate system using a transformation matrix R is 
determined via formula:  
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Reactions in the rod nodes are determined via formula:   
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It is written the expressions for functions of internal forces and moments change, using (30):    
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and it is presented as a vector:   

( ){ } ( ) ( ) ( ) ( ) ( ) ( )[ ]Teeeeeee xQxQxQxMxMxMxu 321321= . 
(33) 

Then it is defined the rod section curvature via formula:   
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As a result, it is obtained a stress vector describing the stress state at each point of the rod 
section at the time step:    
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For the stress state in the rod σηη = σξξ = τξη = 0. 
Transitions from elastoplastic stress to elastic one and back are determined by logical 

conditions: 
- elastic stress σ2

sum ≤ σ2
t                                                                                     

- elastoplastic stress σ2
sum > σ2

t , dσ2
sum /dt  > 0                                                                                                                        

2
3

2
2

2
1

2 33 σ+σ+σ=σ sum . (38) 

Via σt the value of the total stress at the beginning of the n-th semicircle of elastic loading is 
indicated (if t = 1, that σt will be equal the yield strength σs). 

Matrix components S depend on coordinates of considering rod section point. Matrix 
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components A  depend on stress at section point at each time step. During elastoplastic 
deformation the matrix A corresponds to the differential analogue of Hooke's law with 
pseudoelastic ratios depending on the stress state at the point [5]. When creating 
computational algorithms at each time step, the abovementioned formulas are written as 
incremental ratios. 

Write down expressions for determining the stiffness ratios of the rod taking into account 
the geometric nonlinearity. 

The function of changes in internal stress: 
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The angular velocity and the rotation angles: 
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Further a new local stiffness matrix of the rod element is made using the generalized 
More’s formula.   

3 RESULTS COMPARISON WITH FEM 

The programs for the flat and spatial rod system were created for checking the developed 
mathematical model (Fig. 3). Separate program blocks for flat rod system are given in [2]. 
The calculation results were compared with the finite element method in ANSYS. The 
automatic time step feature has been disabled. The following initial data were accepted in the 
task:  
- elastic modulus E = 2,1⋅1011 Pa;  
- the tangent elastic modulus Epl = 2,1⋅1010 Pa;  
- Poisson’s ratio ν = 0,3;  
- yield strength σs = 240 MPa;  
- square section width a = 0,1 m; l = 1 m; 
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- force F = 1⋅105 N. 
As the developed mathematical model takes into account the stress distribution over the 

cross-section area, so in ANSYS the rod cross-section was divided into 20 sites by height and 
width. The number of finite elements on the rod is 100. For the discrete-analytical method 
calculation the rod was given 100 sites of integration. The nonlinear calculation was carried 
out in 20 steps. Calculation results are shown on Fig. 4, 5. 

 

a   b  
Figure 3: Analytical scheme of: a) a plane frame; b) a spatial frame 

 

Figure 4: Stress distribution in a plane frame 

Table 1: Plane frame (fisical nonlinearity) 

Parameter DANA FEA (B188) δ, % 
σ, MPa 345 343 0,6 

∆, m 0,0553 0,0555 0,4 
t, c - 86 - 
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Table 2: Plane frame (geometrical nonlinearity) 

Parameter DANA FEA (B188) δ, % 
σ, MPa 358 331 8 

∆, m 0,054 0,0500 8 
t, c - 90 - 

 

Table 3: Spatial frame (fisical nonlinearity) 

Parameter DANA FEA (B188) δ, % 
σ, MPa 408 406 0,5 

∆, m 0,094 0,09417 0,2 
t, c - 86 - 

 

Table 4: Spatial frame (geometrical nonlinearity) 

Parameter DANA FEA (B188) δ, % 
σ, MPa 440 415 6 

∆, m 0,105 0,09903 6 
t, c - 90 - 

 

 

Figure 5: Stress distribution in a spatial frame 

The comparison of obtained results with PC ANSYS reflected a satisfactory coincidence 
both at stress and at movements (Tab. 1-4). It is required 90 s of computer time to calculate by 
finite element method in case of one processor core loading (2,3 GHz).  
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If the section is not divided into elementary sites then the deviation from exact solution can 
achieve 15-20% as a result of incorrect transition from elastic to plastic zone of the diagram 
σ-ε by the cross-sectional area. During the rod dividing into 10 finite elements and using 
default setting of the ANSYS program the deviation from the exact solution was 15%. 

It took less than 1 second for calculating via developed hybrid method. This fact is 
occurred because number of equations in the system is equal to the static uncertainty data, i.e. 
less than in the finite element method. In case of increasing the number of integration sites, 
the solution tends to be accurate without significant time costs. 

4 CONCLUSIONS 

The proposed discrete-analytical method allows to increase the accuracy in determining the 
stresses in framework and significantly reduce the time of elastoplastic calculation. The key 
features and main advantages of discrete-analytical nonlinear analysis in comparison with the 
finite element method are worth noting. 

The key features:  
- a generalized More’s formula with a tangential stiffness matrix is proposed to determine the 
rod movements, which characterizes the stress state of all the rod section points; 
- the use of the generalized More’s formula with variable rigidity along the rod length allows 
to exclude finite elements along the rod; 
- to calculate statically indeterminate systems a hybrid FEM in the form of a displacement 
method is used with analytical expressions for the rod jointly. 

The main advantaged: 
- the use of the tangential stiffness matrix allows to increase the accuracy of determination of 
elastoplastic deformation in the rods;  
- the proposed method allows to reduce the calculation time at use the explicit and implicit 
numerical integration schemes implemented in powerful software packages based on FEM. 
- by exclusion of finite elements the time of calculation of differential equations motion systems by 
direct methods will be significantly reduced considering the nonlinear structure behavior. 
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