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Abstract. The work deals with the development of explicit algorithms for the simulation of 

multiphase flow of slightly compressible fluid in the subsurface. Two approaches to deriving 

a hyperbolized system of equations are proposed and studied numerically. An original model 

is developed via the principle of minimal sizes and the differential approximation technique. 

Another model is obtained due to the introduction of the mass flux relaxation into the 

continuty equation. Approximations by three-level explicit difference schemes allow 

increasing the time step at least by an order of magnitude in comparison with two-level 

schemes for the classical model. 
 

 

1 INTRODUCTION 

The development of robust computational technologies including adequate mathematical 

models, accuarate numerical methods and efficient parallel codes to predict large-scale 

processes in the subsurface is one of urgent tasks of industrial mathematics. Among the 

possible applications there are optimisation of oil and gas recovery, solution of ecology 

problems concerning contaminant infiltration into the soil, construction of land reclamation 

and hydraulic facilities etc. 

The major goal of the research is the creation of explicit algorithms for the simulation of 

multiphase compressible fluid flow in a porous medium. The interest in explicit schemes is 

explained by a number of valid reasons. Some problems (e.g., oil recovery with combustion 

fronts or phase transitions) require calculations with very small space steps constraining the 

time step strictly. Then explicit schemes can surpass implicit ones in terms of the total run 

time. Besides that explicit methods are preferable for adaptation to HPC systems. 

An original approach to modeling porous medium flows [1] is developed by the authors in 

accordance to this trend. The model is derived by the analogy with the quasi-gas dynamic 

(QGD) system of equations [2] and modified to change the continuity equation type from 

parabolic to hyperbolic. Consequently an explicit scheme with a milder stability condition can 

be used for the approximation. 



Marina Trapeznikova, Natalia Churbanova and Anastasia Lyupa 

 2 

The present paper reports another approach to deriving hyperbolized equations. Currently 

the description of physical phenomena in consideration of the time of propagation of 

perturbations and the time of alignment of macroparameters (e.g., the pressure, the 

temperature, the density) becomes increasingly widespread [3]. In order to account for this 

time it is proposed to introduce the mass flux relaxation into the continuity equation. This 

technique is applied to the simulation of compressible fluid flow in a porous medium for the 

first time. Test predictions show advantages of the both approaches, in particular, the 

accuracy and the possibility to decrease the time step restriction at computations via explicit 

difference schemes.  

2 THE CLASSICAL MODEL OF FLUID FLOW IN A POROUS MEDIUM 

The governing model for isothermal multiphase fluid flow in a porous medium can be 

written as follows (the subscript α = w, n, g denotes the phase –water (w), Non-Aqueous 

Phase Liquid (n), gas (g)) [4, 5]: 
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Here Sα is the saturation, Pα is the pressure, ρα is the density, uα is the Darcy velocity, ϕ is the 

porosity, K is the absolute permeability, kα(Sw) is the relative phase permeability, µα is the 

dynamic viscosity, qα is the source of fluid, g is the gravity vector. The above system consists 

of the continuity equation (1), the generalized Darcy law (2), the state equation (3) and the 

closing relation (4). The next assumptions are used: the porous medium is non-deformable 

and isotropic, fluids are immiscible, non-interacting and do not dissolve, phase transitions are 

absent, liquids are slightly compressible, gas is ideal, capillary forces are taken into account. 

The current research focuses on two-phase cases: water/air and water/oil flows are 

discussed. System (1)-(4) is completed by constitutive relationships for the relative phase 

permeabilities and the pressure difference between phases (the capillary pressure) as a 

function of saturation. They are represented by the van Genuchten model [5] formulated in 

terms of the effective saturation of water (Swe): 
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where Swr and Snr are residual saturations of water and NAPL correspondently, α and N are 

some parameters. 

3 THE KINETIC APPROACH TO POROUS MEDIUM FLOW SIMULATION 

3.1 QGD-based model and computational algorithm 

Among modern methods of computational fluid dynamics kinetic algorithms such as the 

Lattice Boltzmann schemes and the kinetically consistent finite difference (KCFD) schemes 

[2] are very popular. The derivation of KCFD schemes and the related QGD system of 

equations is based on the so-called principle of minimum sizes. This principle states the fact 

that in the numerical solution of a number of problems of continuum mechanics it makes no 

sense to consider scales smaller than some minimal reference length. In porous media this 

length l is a distance at which rock microstructure is negligible (l is of the order of hundred 

rock grain sizes). The minimal reference time τ is assumed to be the time for inner 

equilibrium establishing in the volume of linear size l. Starting from the basic equation (1), 

using the principle of minimal sizes and the differential approximation technique the next 

modified phase continuity equation has been derived [1]: 
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Here cα is the sound speed in α-phase.  

Equation (8) has a regularizing term and a second order time derivative with small 

parameters. The regularizer allows using central differences for the convective term 

approximation, the hyperbolic type of the equation leads to a three-level explicit scheme with 

a milder stability condition in comparison with explicit schemes for the parabolic equation 

(1). 

It is proposed to use linear state equations for slightly compressible liquids and the ideal 

gas state equation if the gas phase is accounted for in calculations: 

 0 0[1 ( )], ,P P w n            (9) 
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0
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Here βα is the coefficient of isothermal compressibility, P0α and ρ0α are reference values. 

A computational algorithm of the explicit type has been developed for numerical 

implementation of the modified model (8), (2), (9)-(10), (4)-(7). In case of two-phase 

water/gas flow when Pg and Sw are chosen as primary variables the algorithm is described 

below. 

Starting from the initial and boundary conditions for Pg and Sw on each j-th time level 

(j = 1, 2, …) the next sequence of operations are fulfilled: 
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- Computation of 
j
gS  from (4), 

α α ( )j j

wk k S , ( )j

c gw wP S  and then j

wP  from (5)-(7); 

- Computation of phase densities 
α

j  from (9), (10); 

- Computation of Darcy velocities 
α

j
u  from (2); 

- Computation of the term 1( ) jS    from (8) for the both phases via a three-level 

explicit scheme; 

- Computation of 
1 1,j j

g wP S 
 solving the following system of nonlinear algebraic 

equations locally at each point of the grid (the system is formed by state equations 

multiplied by unknowns 1jS

 , there are the just found values 1( ) jS    in the right-

hand sides) 
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This system can be solved, for example, by Newton's method that takes only a few 

iterations. 

- Data exchange at multiprocessor computing. 

The presented model and algorithm are generalized successfully to the case of three-phase 

fluid flow, high parallelization efficiencies are achieved at computations on hybrid 

supercomputers [1]. 

3.2 Drainage test problem 

For verification of the above model and algorithm it is proposed to solve numerically a 

drainage test problem carefully studied in [5]. The process of two-phase (water/air) isothermal 

infiltration due to the gravity is simulated. The geometry is illustrated by Figure 1.  

 

Figure 1: The drainage problem statement 

Initially the given thin column is filled by a fully water-saturated porous medium. Sources 

are absent, pumping of fluids does not occur. At the initial moment the hydrostatic 

distribution of the water pressure is set in the column, the air pressure is assumed to be equal 

to the water pressure. The top boundary is open to the atmosphere (Pg=const) with a no-flow 
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condition on water, a no-flow condition on air is set at the bottom, only water drains from the 

column (Pw=const). All physical quantities are as in [5], the medium is homogeneous. The 

small parameters are chosen empirically. In the current computation they equal: l = 10
-7

 cm,   

τ = 10
-3

 s (that coincides with the time step Δt = 10
-3

 s at the spatial grid step h = 0.67 cm). 

The obtained distribution of water saturation with the depth at different time moments is 

depicted in Figure 2.  

 

Figure 2: Distribution of water saturation in depth at certain points in time for the drainage problem  

(solution via the model and algorithm from Section 3.1) 

 
Figure 3: Distribution of water saturation in depth at certain points in time for the drainage problem 

(Pinder&Gray solution [5]) 
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The solution (see Figure 2) is smooth due to the regularizer. It is found that the employed 

three-level scheme for the modified continuity equation allows increasing the time step by an 

order of magnitude in comparison with the two-level upwind scheme for the classical 

parabolic equation. 

Figure 3 is taken from [5]: the authors indicate that the results were obtained numerically 

using the NAPL Simulator program (freely available, https://www.epa.gov/water-

research/non-aqueous-phase-liquid-napl-simulator). 

A rather good agreement is observed at the comparison of figures 2 and 3 that testifies to 

the adequacy of the developed kinetic approach to porous medium flow simulation.  

4 AN APPROACH WITH THE MASS FLUX RELAXATION 

Let us consider another approach to deriving hyperbolized equations which seems to be 

physically more reasonable. Equation (1) can be briefly written in the form: 
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where Qα is the α- phase flux.  

Let D

  Q u  be the Darcy flux. In the classical model: D

 Q Q . 

Let us now introduce the flux relaxation:  
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The small parameter τ is the relaxation parameter characterizing the time of eqilibrium 

establishing in the system.  

The following expression is valid: 

 div div divD

t


  


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

Q
Q Q  (14) 

If to differentiate equation (12) by time, then to multiply it by τ, to take into account (14) 

and to substitute div Q  expressed from (5), one can obtain the next final form of the 

continuity equation modified by the flux relaxation introduction: 

 
   2

2
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The known technique used in [6] to get the system of equations suitable for 

implementation by IMPES (IMplicit Pressure – Explicit Saturation) method [6, 4] can be also 

applied to the model including the modified equation (15). The purpose is to turn the model 

into the formulation in terms of the average pressure and the water saturation. 

If to divide (15) by ρα  and to summarize these two equations for the phases, to substitute 

the Darcy velocity, to account for the capillary pressure and then to make some 

simplifications (ϕ = const, the state equations are linear) the next pressure equation is derived: 

https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator
https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator
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The equation for the water saturation is as follows: 
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Both equations (16), (17) contain second time derivatives with the small parameter.  

A fully explicit algorithm is proposed for the numerical implementation of the modified 

model. Three-level explicit difference schemes are employed for the approximation wherein 

relative phase permeabilities are calculated upwind. First, 
1j

avgP 
 is found from the scheme for 

(16), time derivatives of saturations in this scheme are calculated explicitly using values from 

the previous time level. Second, 1j

wS   is found from the scheme for (17) using 

 
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2

j

c wj

w avg

P S
P P   . 
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5 TEST PREDICTIONS 

A test problem on two-phase water/oil flow is predicted to verify and to compare the 

proposed approaches to pororus medium flow simulation. The investigated domain of a 

homogenius isotropic porous medium is a parallelepiped of the size 1m 1m 5m  . Due to the 

simmetry the problem is reduced to a 1D geometry. The space step of the grid is fixed as 

0.05mh  .  

Initial conditions: 0.35, 0.1 1.5w avrS P z     

Boundary conditions: 
0 0 55

0.7, 0.35, 1.5atm, 1atmw w avr avrz z zz
S S P P

  
     

Table 1 contains fluid and medium parameters used in computations.  

 

Table 1: Fluid and medium parameters 

Physical quantity Water, w Oil, n 

Density reference value, kg/m
3 

1000 850 

Dynamic viscosity, Pa·s 10
-3 

10
-2 

Compressibility, Pa
-1 

4.4·10
-10 

10
-9 

Residual saturation 0.05 0.05 

Pressure reference value, atm 1 1 

Porosity 0.4 

Absolute permeability, m
2 

6.64·10
-11 

 

The next parameters are assigned in (5), (6) : N = 3.25, α = 10. 

The system (1)-(7) is strongly non-linear therefore it does not seem possible to obtain the 

exact solution analytically. As a reference solution of the test problem the solution of system 

(1)-(7) obtained by IMPES method [6, 4] with the time step 410 st   is taken. The time step 

is selected by comparing results of calculations with different steps. Further reduction of the 

step does not lead to a significant change in the results. The detailed data are presented in 

Table 2 which reports errors of IMPES method at time moments of 50 and 100 seconds for 

different time steps. These errors are calculated relative to the solution obtained with 
410 st   . The relative error between quantities A and B is given by the next formula: 

 

2

1

/
iN

i i
i

i i

A B
N

A




 
  

 
  (18) 

Table 2: Errors of IMPES method at calculations of Pavr and Sw with different time steps 

Δt, s εp,  εs  at t = 50 s εp,  εs  at t = 100 s 

1·10
-2 

1.4·10
-7

,    4.1·10
-6

 1.0·10
-7

,    2.8·10
-6

 

1·10
-3

 2.7·10
-8

,    7.8·10
-7

 3.0·10
-8

,    5.4·10
-7

 

5·10
-4

 1.5·10
-8

,    4.2·10
-7

 1.7·10
-8

,    3.0·10
-7

 

2·10
-4

 4.7·10
-9

,    1.3·10
-7

 5.8·10
-9

,    9.3·10
-8

 

 



Marina Trapeznikova, Natalia Churbanova and Anastasia Lyupa 

 9 

While solving the test problem by the model and the algorithm proposed in Section 4 the 

small parameter τ is chosen empirically depending on the time step to ensure the stability of 

computations. Comparison of the reference solution with the solution obtained via the 

modified model implemented by three-level explicit schemes is reflected in Table 3. 

 

Table 3: Errors of the three-level scheme relative to the reference solution for different Δt and τ at t = 20 s 

Δt, s τ, s εp εs 

1·10
-4

 1·10
-5

 3.2·10
-4

 2.8·10
-3

 

1·10
-4

 2·10
-5

 1.9·10
-4

 1.9·10
-3

 

1·10
-4

 5·10
-5

 1.9·10
-7

 2.3·10
-6

 

1·10
-4

 1·10
-4

 3.1·10
-7

 3.7·10
-6

 

1·10
-4

 2·10
-4

 5.3·10
-7

 6.5·10
-6

 

2·10
-4

 2·10
-4

 2.4·10
-4

 1.5·10
-3

 

2·10
-4

 5·10
-4

 6.3·10
-7

 8.0·10
-6

 

 

The error 310s
  is too large, the scheme is unstable at the corresponding values of Δt 

and τ. For long-term calculations the time step and the relaxation time are chosen as follows: 
4 410 s, 10 st     . Note that the two-level explicit scheme implementing the classical 

model with the parabolic continuity equation is stable at 510 st   . Thus the hyperbolization 

allows increasing the time step of explicit methods at least by an order of magnitude. 

The same conclusion is drawn while solving the test problem by the model and the 

algorithm proposed in Section 3.1: values 4 410 s, 10 st      prove to be optimal. 

Consideration of a number of test problems shows that the choice t   leads to satisfactory 

results. The choice of the regularizing parameter l is more difficult because it affects not only 

the stability but also the accuracy of the method. Good results for the above test are achieved 

when l = 10
-8

 m. 

Figure 4 illustrates the comparison of the water saturation and the oil pressure obtained at 

two time moments by different methods: the approach from Section 3.1 is marked as 

“method I”, the approach from Section 4 is called “method II”, the reference solution 

corresponds to “IMPES method”. A very good agreement is observed. 

6 CONCLUSIONS 

The proposed approaches to the simulation of compressible fluid flow in porous media use 

a hyperbolized continuity equation and its approximation by an explicit difference scheme. 

The algorithms provide the same increase in the time step and are similar in terms of 

computational costs. At implementation of the QGD-based approach there are difficulties in 

choosing the regularization parameter that significantly affects the accuracy. The second 

approach is more in line with traditional methods. The hyperbolization in this case seems to 

be physically reasonable. However this algorithm is more difficult to generalize for predicting 

multiphase multicomponent fluid flows. The both approaches will be further developed for 

solving applied problems using supercomputers. 
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(a) Water saturation, t = 100 s (b) Oil pressure, t = 100 s 

  

(c) Water saturation, t = 300 s (d) Oil pressure, t = 300 s 

Figure 4: Distributions of water saturation and oil pressure in depth at different time moments for the two-phase 

water/oil test problem 
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