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Abstract. A level-set model is proposed for simulating interfacial heat or mass transfer
in two-phase flows. The Navier-Stokes equations as well as the heat transfer or mass
transfer equations are discretized using a finite-volume approach on a collocated unstruc-
tured mesh, whereas a multiple marker level-set methodology is introduced in order to
avoid the numerical coalescence of the fluid interfaces. Some numerical examples are
considered to show the capabilities of this model, including pure diffusion of a chemical
species with chemical reaction, and buoyancy-driven motion of bubble swarms with mass
transfer. Present results are compared against analytical and empirical correlations from
the literature as validations of the proposed model.

1 INTRODUCTION

Bubbly flows with heat transfer or mass transfer are common in natural phenomena
and technological applications [26]. Some applications can be found in the so-called
unit operations of the chemical engineering, where bubble columns are used as chemical
and biochemical reactors. Although some empirical correlations have been proposed for
estimation of heat and mass transfer coefficients in bubbles or droplets [17], there is a lack
of understanding of the interplay between fluid mechanics and interfacial mass transfer
(or heat transfer). Since these small-scale phenomena affect the overall operation and
control of multiphase systems, as well for future optimization and design, it is of great
importance to improve the accuracy of these models.

The physical description of bubbly flows with heat transfer and mass transfer, lead to
a complex and highly non-linear mathematical problem. Indeed, theoretical methods can
be used to the simplest cases, whereas experimental measurements can be difficult due to
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limitations in optical access. On the other hand, the combination of High Performance
Computing (HPC) and Direct Numerical Simulation (DNS) of the Navier-Stokes equations
open the possibility to design non-invasive and controlled experiments of bubbly flows,
enabling an accurate control of the bubble size distribution, deformability, coalescence,
and flow conditions. In this sense, multiple methods have been introduced in the last
decades for DNS of two-phase flows, for instance: volume-of-fluid (VOF) methods [23],
level-set (LS) methods [28, 32, 27, 4], coupled VOF/LS methods [7], and front tracking
(FT) methods [34]. Furthermore, some numerical models have been proposed for heat
transfer or mass transfer at deformable fluid interfaces [20, 13, 14, 2, 35, 15, 19]. However,
DNS of heat transfer or mass transfer in bubble swarms are still quite limited, and only
few works have been published [21, 1, 30, 24]. Although previous papers touched upon
heat or mass transfer in single bubbles or droplets using VOF, LS and FT methods, to
the best of the authors’ knowledge, there are no previous studies in the context of the
conservative level-set (CLS) method [27, 4]. Indeed, this work aims to present a novel
numerical methodology for simulating interfacial heat transfer or mass transfer in bubbly
flows, which extends a multiple marker CLS approach introduced in our previous works
[5, 8]. This approach includes the adoption of three-dimensional collocated unstructured
meshes [4], as well as adaptive mesh refinement for hexahedral meshes [3]. Since a CLS
method [4] is used, accumulation of mass conservation error is circumvented, whereas
the multiple marker methodology [5, 8] avoids the numerical and potentially unphysical
merging of the fluid interfaces, taken into account the physics of bubble collisions in
long-time simulations of bubbly flows.

This paper is organized as follows: The mathematical formulation and numerical meth-
ods are presented in section 2. Numerical experiments are presented in section 3. Finally,
concluding remarks and future work are discussed in section 4.

2 MATHEMATICAL FORMULATION AND NUMERICAL METHODS

2.1 Incompressible two-phase flow

The Navier-Stokes equations for the dispersed fluid (Ωd) and continuous fluid (Ωc) can
be combined into a set of equations in a global domain Ω = Ωd ∪ Ωc, with a singular
source term for the surface tension force at the interface Γ [34, 4]:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ

(

∇v + (∇v)T
)

+ (ρ− ρ0)g+ fσδΓ, (1)

∇ · v = 0, (2)

where v is the fluid velocity, p denotes the pressure field, ρ is the fluid density, µ is the
dynamic viscosity, g is the gravitational acceleration, fσδΓ is the surface tension force, δΓ
is the Dirac delta function concentrated at the interface, subscripts d and c denote the
dispersed phase and continuous phase respectively. Physical properties are constant at
each fluid-phase with a jump discontinuity at the interface:

ρ = ρdHd + ρc(1−Hd), µ = µdHd + µc(1−Hd), (3)
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where Hd is the Heaviside step function that is one at fluid d and zero elsewhere. At
discretized level a continuous treatment of physical properties is adopted in order to
avoid numerical instabilities at the interface [4]. If periodic boundary condition is applied
on the y− axis (aligned to g), then a force −ρ0g is added to the Navier-Stokes equations
(Eq. (1)), with ρ0 = V −1

Ω

∫

Ω
(ρdHd + ρc(1−Hd)) dV , to prevent the acceleration of the

entire flow field in the downward vertical direction due to the action of g [31, 5, 9]. On the
other hand, ρ0 = 0 for simulations without periodic boundary conditions on the y− axis.

2.2 Multiple marker level-set method

The conservative level-set method (CLS) introduced by [4] for interface capturing on
unstructured grids is used in this work. Furthermore, in order to avoid the numerical
coalescence of the fluid interfaces, each fluid particle is represented by a CLS function,
according to the multiple marker CLS method introduced by [5, 8, 9]. In this method, the
interface of the ith fluid particle is defined as the 0.5 iso-surface of a regularized indicator
function φi, where i = 1, 2, ..., nd and nd is the total number of fluid particles in the
dispersed phase. Since the velocity field is solenoidal (Eq. 2), the ith interface transport
equation can be written in conservative form:

∂φi

∂t
+∇ · φiv = 0, i = 1, 2, ..., nd. (4)

Furthermore, an additional re-initialization equation is introduced in order to keep a sharp
and constant interface profile:

∂φi

∂τ
+∇ · φi(1− φi)ni = ∇ · ε∇φi, i = 1, 2, ..., nd. (5)

This equation is advanced in pseudo-time τ up to steady state. It consists of a compressive
term, φi(1 − φi)ni|τ=0, which forces the level-set function to be compressed onto the
interface along the normal vector ni, and of a diffusion term, ∇ · ε∇φi, to maintain the
CLS profiles with characteristic thickness ε = 0.5h0.9, where h is the grid size [4, 8].

Geometrical information on the interface Γi, such as normal vectors ni and curvatures
κi are obtained as follows:

ni(φi) =
∇φi

‖∇φi‖
, κi(φi) = −∇ · ni. (6)

Surface tension forces are calculated by the continuous surface force model [16], extended
to the multiple marker CLS method in our previous work [5, 8, 9]:

fσδΓ =

nd
∑

i=1

σκi(φi)∇φi. (7)

Finally, in order to avoid numerical instabilities at the interface, fluid properties in Eq. 3
are regularized by means of a global level-set function Hd = φd [5, 8] defined as:

φd(x, t) = max{φ1(x, t), ..., φnd−1(x, t), φnd
(x, t)}. (8)
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2.3 Mass transfer

In this research, it is assumed that convection, diffusion and reaction of the mass
dissolved from the dispersed phase Ωd exists only in the continuous phase Ωc, whereas the
concentration inside the bubbles is kept constant [19, 30, 1]. This assumption is valid for
moderately soluble substances [17], moreover, bubbles do not shrink and the concentration
is not coupled to the hydrodynamics. Therefore, the mass transfer of a chemical species
is given by the following convection-diffusion-reaction equation, which is only considered
in the continuous phase Ωc:

∂C

∂t
+∇ · (vC) = ∇ · (D∇C) + ṙ, (9)

where C is the concentration of the dissolved species, D is the diffusion coefficient which
takes the value Dc in Ωc and Dd in Ωd, ṙj denotes the overall chemical reaction rate, e.g.
ṙj = −k1C with k1 defined as the first-order reaction rate constant.

Given a cell ΩP and its neighbor cells Ωi with common vertexes, and the global level-set
function φd defined in Eq. (8), then ΩP is an interface cell if there is at least one cell Ωi

for which φd,P > 0.5 and φd,i < 0.5, or φd,P < 0.5 and φd,i > 0.5, or if φd,P = 0.5. Here
the subindex P denotes the current cell, and subindex i denotes the neighbor cell. In this
context, the concentration of the dissolved species (C) at the interface cells is computed
by linear interpolation, using information of the concentration field from the continuous
fluid phase Ωc (excluding interface cells). This linear interpolation is performed using a
nodes stencil {P, I, Fp}, P denotes the node at the current interface cell ΩP , I denotes
a point at the interface, Fp denotes the projection of the node F on the line lp, F is the
closest node to the line lp selected from the neighbor nodes of P , in a region of two cell
layers around ΩP , lp is a line orthogonal to the interface which contains the points xP

and xI . Indeed, CP is computed as follows:

CP = CI −
||xI − xP ||

||xI − xFp
||
(CI − CFp

), (10)

where CFp
= CF + (xFp

− xF ) · (∇hC)F . The minimum distance from the point Fp to the
interface Γ is approximated as follows: ||xI − xFp

|| = ||xI − xP ||+ |nP · (xF − xP )|, with
nP = (∇hφd)P/||(∇hφd)P ||. The distance function at the cell P , |d(xP , t)|, is calculated
from the CLS function φd(xP , t), as follows: ||xI − xP || = |2ε (tanh−1(2φd(xP , t))− 1) |
[4, 27].

2.4 Numerical methods

The Navier-Stokes equations, Eq. (1-2), interface capturing equations, Eqs. (4-5),
and mass transfer equation, Eq. (9), are solved with a finite-volume discretization of
the physical domain on a collocated unstructured mesh [4], where both scalar and vector
variables (p, v, φ, ρ and µ) are stored in the cell centroids. Following [4], the convective
term of momentum equation (Eq. (1)), interface transport equation (Eq. (4)), and mass
transfer equation (Eq. (9)), is explicitly computed approximating the fluxes at cell faces
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with a Total Variation Diminishing (TVD) Superbee limiter scheme [4]. Diffusive terms
are centrally differenced, whereas a distance-weighted linear interpolation is used to find
the cell face values of physical properties and interface normals, unless otherwise stated.
Gradients are computed at cell centroids by means of the least-squares method [4]. A
central difference scheme is used to discretize both compressive and diffusive terms of the
re-initialization equation (Eq. (5)). The resolution of the velocity and pressure fields is
achieved using a standard fractional-step projection method originally developed by [18].
In the first step a predictor velocity (v∗) is computed as follows:

ρv∗ − ρnvn

∆t
= Cn

v
+Dn

v
+ (ρ− ρ0)g+

nd
∑

i=1

σκi(φi)∇hφi, (11)

where super-index n denotes the previous time step, D
v
(v) = ∇h ·µ∇hv+∇h ·µ(∇hv)

T ,
∇h · µ∇hv is approximated by a central difference scheme, ∇h · µ(∇hv)

T is calculated by
the Gauss-Theorem [4], ∇hφi and (∇hv)

T are evaluated by using the least-squares method
[4], κi(φi) is obtained at each cell according to Eq. (6), and C

v
(ρv) = −∇h · (ρvv) is

discretized using flux limiters schemes [4, 8]. In a second step a corrected velocity (v) is
computed by:

ρv− ρv∗

∆t
= −∇h(p), (12)

Furthermore, imposing ∇h ·v = 0 to Eq. (12) results in a Poisson equation for the pressure
field, which is solved by means of a preconditioned conjugate gradient method:

∇h ·

(

1

ρ
∇hp

)

=
1

∆t
∇h · (v

∗) , e∂Ω · ∇hp|∂Ω = 0. (13)

Finally, a cell-face velocity vf [4, 8] is used to advect momentum (Eq. (1)), CLS functions
(Eq. (4)), and concentration (Eq. (9)). This velocity is defined to fulfill the incompress-
ibility constraint in each control volume, Eq. 2, and to avoid pressure-velocity decoupling
when the pressure projection is made on collocated meshes [29]:

vf =
∑

q∈{P,F}

wq

(

vq +
∆t

ρq
(∇hp)q

)

−
∆t

ρf
(∇hp)f , (14)

where P and F are the control volumes with common face f [4, 8], wq = 0.5, ρf is
calculated by arithmetic averaging. The reader is referred to Appendix B of our previous
work [8] for further technical details on the origin of Eq. (14).

A TVD Runge-Kutta method [22] is used for time integration of advection equation
(Eq. (4)) and re-initialization equation (Eq. (5)). Solving Eq. (5) up to steady-state
results in a smooth transition of φi at the interface, proportional to the diffusion coefficient
ε = 0.5h0.9, where h is the grid size [4]. One iteration per physical time step of the re-
initialization Eq. (5) is sufficient to keep the profile of the CLS functions in present work
[4, 7].
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Present numerical algorithms are implemented in the framework of an in-house par-
allel C++/MPI code called TermoFluids [33]. The code is run on the supercomputer
MareNostrum IV using a range of 96 − 576 CPU cores for 3D simulations of bubbly
flows. The reader is referred to [4, 5, 6, 8, 9] for additional technical details on the finite-
volume discretization of Navier-Stokes equations, energy equation and level-set equations
on collocated unstructured grids.

3 NUMERICAL EXPERIMENTS

Validations and verifications of the CLS method [4] have been reported in our previ-
ous works, for instance: dam-break problem and gravity-driven motion of single bubbles
[4, 6], binary droplet collision with bouncing outcome [5], drop collision against a fluid
interface without coalescence [5], bubbly flows in vertical channels [9, 11], falling droplets
[10], Taylor bubbles [12], and thermocapillary-driven motion of deformable droplets [7].
Therefore, this research can be considered a further step in the development of numerical
methods for simulation of bubbly flows with interfacial mass transfer (or heat transfer)
using unstructured meshes.

Regarding validation and verification of this numerical model, present numerical exper-
iments are focused on DNS of gravity-driven bubbly flows with mass transfer. Therefore,
the relevant physical quantities are summarized as follows: σ, g, UT , d, ρd, ρc, µd, µc, where
UT is the rise velocity and d = (6V/π)1/3 is the initial spherical volume equivalent diameter
of the bubble. Nondimensionalization results in next parameters [17]:

Mo ≡
gµ4

c∆ρ

ρ2cσ
3
, Eo ≡

gd2∆ρ

σ
, Re ≡

ρcUTd

µc

, ηρ ≡
ρc
ρd

, ηµ ≡
µc

µd

, (15)

where, ηρ is the density ratio, ηµ is the viscosity ratio, Mo is the Morton number, ∆ρ =
|ρc−ρd| is the density difference between the fluid phases, subscript d denotes the dispersed
fluid phase, subscript c denotes the continuous fluid phase, Eo is the Eötvös number, Re
is the Reynolds number, and t∗ = t

√

g/d is the dimensionless time. Moreover, numerical
results for each bubble (Rei(t)) will be reported in terms of the so-called drift velocity
[31], (UT )i(t) = (〈vi〉(t) − 〈vc〉(t)) · ey, defined as the bubble velocity with respect to a
stationary container, where 〈vi〉(t) is the velocity of the bubble centroid, 〈vc〉(t) is the
spatial averaged velocity of the continuous fluid in Ωc.

In addition, large-scale models incorporates closures for mass transfer by means of a
Sherwood correlation, Sh = f(Re, Sc), whereas it is expected an effect of the bubble
fraction α in bubble swarms. Mass transfer in bubbly flows can be characterized by the
Sherwood number (Sh) and, Schmidt number (Sc) or Peclet number (Pe), defined in Ωc

as follows:

Sh =
kLd

Dc
, Sc =

µc

ρcDc
, P e =

UTd

Dc
= ReSc, (16)

with kL defined as the liquid-side mass transfer coefficient. Simulation of bubbly flows
with mass transfer is performed in a fully periodic domain (Section 3.2). Therefore,
saturation of chemical species concentration is avoided by including a first order chemical
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reaction in Ωc [30]. The mass transfer coefficient (kL(t)) in bubbly flow with mass transfer
and first order chemical reaction (Section 3.2) is computed as follows:

kL(t) =
VΩc

k1〈C〉Ωc
(t)

(HC0 − 〈C〉Ωc
(t))

∑nd
i=1Ai(t)

(17)

where VΩc
is the volume of Ωc, H is the Henry constant (H = 1 unless otherwise stated),

C0 is the concentration inside the bubble, Ai(t) =
∫

Ω
||∇φi||dV is the bubble surface,

〈C〉Ωc
(t) is the spatial averaged concentration in Ωc.

3.1 Diffusion of a stationary spherical bubble

The validation of the numerical model to solve the mass transfer equation (Eq. (9))
is performed by comparing simulation result of stationary spherical bubble in a quiescent
liquid pool with analytical solution. At steady state, the mass transfer of a chemical
species with first order chemical reaction, in spherical coordinates is written as:

Dc

r2
∂

∂r

(

r2
∂C

∂r

)

− k1C = 0 (18)

which has the following analytical solution:

C(r) = C0
d

2r

e−ar

e−ad/2
(19)

with a = (k1/Dc)
1/2, C0 is the concentration inside the bubble and d is the bubble

diameter.
In this simulation, the bubble of diameter d, is fixed at the center of a cubic domain

Ω = [0, 3.6d] × [0, 3.6d] × [0, 3.6d]. Furthermore k1 = 0.5, Dc = 5 × 10−4, C0 = 1
and d = 0.277̄. The velocity field is set to v = 0 in the whole domain, whereas the
initial concentration is one inside the droplet and zero otherwise. Neumann boundary
condition is used on the confining boundary. The mesh is conformed by uniform and
tetrahedral control volumes, with averaged grid sizes h = {d/36, d/18, d/9} and number
of control volumes Ncv = {29.5M, 3.6M, 0.5M} respectively. Comparison between the
continuous radial concentration profile and the analytical solution is presented in Fig.
1-a for different grid sizes (h). As can be seen there is a close agreement between the
computed concentration and the exact solution, moreover the accuracy increases with grid
refinement. Fig. 1-b shows species concentration field at steady state . It is observed that
the species diffuses from the bubble to the continuous liquid phase, as a consequence of
the concentration gradient at the interface. Therefore this validation indicates that the
present method has been correctly implemented on unstructured meshes.

3.2 Mass transfer in bubble swarms

Ω is defined as a cube of length-side 4d, where d is the initial bubble diameter. Ω
is divided in 8M uniform hexahedral cells, with grid size h = d/50, distributed on 576
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Néstor Balcázar, Óscar Antepara, Joaquim Rigola and Assensi Oliva

Figure 1: Mass transfer with first order chemical reaction from a stationary spherical bubble, at steady
state. (a) Grid convergence, mesh conformed by tetrahedral cells, grid size h = d/36 (+), h = d/18
(∗) and h = d/9 (◦). Analytical solution (continuous red line). (b) Concentration field at steady state,
h = d/36 .

Figure 2: Mass transfer with first order chemical reaction from a bubble swarm (8 bubbles) in a cubic
periodic domain, at t∗ = tg1/2d−1/2 = 62.6. Eo = 3.125, Mo = 5 × 10−6, ηρ = ηµ = 100, Sc = 10,
α = 6.5%. (a) Concentration contours on a plane x − y. (b) Vorticity contours, Ωz = ez · ∇ × v, on a
plane x− y.

processors. Periodic boundary conditions are used on the x−y, y− z and x− z boundary
planes. At the beginning, bubbles are initially placed in Ω following a random pattern,
whereas the fluid phases are quiescent. Since fluids are assumed to be incompressible
and bubble merging is not allowed, the void fraction (α = Vbubbles/VΩ) and the number of
bubbles are constant throughout the simulation.

Dimensionless parameters used in this simulation are Eo = 3.125, M = 5 × 10−6,
ηρ = 100, ηµ = 100, Sc = 10, α = 6.5%, and k1d

2D−1
c = 79.7. corresponding to dilute

bubbly flows with 8 bubbles contained in the periodic cube. Fig. 2 shows an snapshot
of the motion of a swarm of 8 bubbles in a full periodic domain at t∗ = 65.6, and slices
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Figure 3: Mass transfer with first order chemical reaction from a bubble swarm (8 bubbles) in a cubic
periodic domain. Eo = 3.125, Mo = 5 × 10−6, ηρ = ηµ = 100, Sc = 10, α = 6.5%. Time evolution for:
(a) Reynolds number for each bubble, and average Reynolds number (red line). (b) Bubble surface. (c)
Chemical species averaged concentration in Ωc. (d) Mass transfer coefficient (kl). (e) Bubble trajectories.

of concentration field C (Fig. 2a) and vorticity field ey · ∇ × v (Fig. 2b) on the plane
x− y. Fig. 3 depicts the time evolution of Reynolds number Rei(t), bubble surface Ai(t),
chemical species concentration averaged in Ωc, mass transfer coefficient kL(t) computed by
means of Eq. (17), and bubble trajectories. Furthermore, Fig. 3a illustrates that Rei(t)
presents an oscillatory and transient behaviour due to the bubble-bubble interactions
according to the so-called drafting-kissing-tumbling phenomenon [5, 9, 10], whereas the
bubble swarm achieves a quasi-steady steady state after t∗ ∼ 40. Regarding the chemical
species averaged concentration in Ωc (Fig. 3c) and mass transfer coefficient (Fig. 3d),
these tend also to a quasi steady-state at t∗ ∼ 40.

4 CONCLUSIONS

A level-set model for interfacial mass transfer (or heat transfer) in two-phase flows has
been introduced. From a numerical and computational point of view, numerical experi-
ments performed in this work demonstrate the ability of the present method for simulat-
ing bubbly flows with interfacial mass transfer and chemical reaction, taken into account
bubble collisions, avoiding numerical merging of the fluid interfaces. From a physical
point of view, bubble swarm simulation in full periodic domain shows random fluctua-
tions in bubble velocities analogous to that observed in turbulence, whereas the averaged
Reynolds number tend to the steady-state. Furthermore, these random fluctuations are
observed also on the bubble surfaces. Regarding the spatial averaged chemical species
concentration, it achieves the steady state after an initial transient, whereas the mass
transfer coefficient tends to a quasi steady-state at t∗ ∼ 40. Altogether, this model leads
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to a powerful tool for simulating mass transfer in bubble swarms, including the impact
of the hydrodynamics, which are relevant to understanding the mechanisms controlling
mass transfer and chemical reactions in reactive systems. Extensions of these capabilities
for bubbly flows with complex chemical reactions, surfactants and phase change, in the
context of the conservative level-set method introduced by [4, 5, 9], will be presented in
future works.
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Néstor Balcázar, Óscar Antepara, Joaquim Rigola and Assensi Oliva

[20] Davidson, M.R., Rudman, M., 2002. Volume-of-fluid calculation of heat or mass
transfer across deforming interfaces in two-fluid flow. Numerical Heat Transfer, Part
B: Fundamentals 41, 291-308.

[21] Dabiri, S., Tryggvason, G., 2015. Heat transfer in turbulent bubbly flow in vertical
channels. Chem. Eng. Sci. 122, 106113.

[22] Gottlieb, S., Shu, C.W., 1998. Total Variation Dimishing Runge-Kutta Schemes,
Mathematics of Computations 67, 73-85.

[23] Hirt, C., Nichols, B., 1981. Volume of fluid (VOF) method for the dynamics of free
boundary, J. Comput. Phys. 39, 201-225

[24] Koynov, A., Khinast, J. G., Tryggvason, G., 2005. Mass transfer and chemical reac-
tions in bubble swarms with dynamic interfaces, AIChE Journal 51(10), 2786-2800.

[25] Mao, Z.S., Li, T., Chen, J., 2001. Numerical simulation of steady and transient mass
transfer to a single drop dominated by external resistance. International Journal of
Heat and Mass Transfer 44, 1235-1247.

[26] Mudde, R. Gravity-Driven bubbly flows, Annu. Rev. Fluid Mech. 37, 393-423. 2005.

[27] Olsson, E., Kreiss, G., 2005. A conservative level set method for two phase flow, J.
Comput. Phys. 210, 225-246.

[28] Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79, 175-210.

[29] Rhie, C.M., Chow, W.L., 1983. Numerical Study of the Turbulent Flow past an
Airfoil with Trailing Edge Separation, AIAA J. 21, 1525-1532.

[30] I. Roghair, M. Van Sint Annaland, J.A.M. Kuipers, 2016. An improved Front-
Tracking technique for the simulation of mass transfer in dense bubbly flows. Chem.
Eng. Sci. 152, 351-369.

[31] Esmaeeli, A., Tryggvason, G., 1999. Direct numerical simulations of bubbly flows
Part 2. Moderate Reynolds number arrays, J. Fluid Mech. 385, 325-358.

[32] Sussman, M., Smereka, P., Osher, S., 1994. A Level Set Approach for Computing
Solutions to Incompressible Two-Phase Flow, J. Comput. Phys. 144, 146-159.

[33] Termo Fluids S.L., web page: http://www.termofluids.com/

[34] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W.,
Han, J., Nas, S., Jan, Y-J., 2001. A Front-Tracking Method for the Computations of
Multiphase Flow, J. Comput. Phys. 169, 708-759.

[35] Yang, C., Mao, Z.S., 2005. Numerical simulation of interphase mass transfer with
the level set approach. Chemical Engineering Science 60, 2643-2660.

12


