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Abstract. The present work is concerned with assessing different numerical viscous flux
schemes that could be used to solve flux discontinuities across cell interfaces. The aim is to
verify the accuracy of all schemes, evaluate their robustness and computational efficiency
in term of number of iterations and time required to satisfy a convergence criterion.
The methods here considered are the first and second approaches by Bassi and Rebay,
the interior penalty approach and the local spectral difference approach. Variations on
ways to calculate terms not defined in these methods are also considered. The numerical
experiments are focused on evaluating the schemes across a range of Reynolds numbers
and their coupling with limiting techniques in order to obtain solutions to transonic flows.

1 INTRODUCTION

High-order numerical schemes represent the natural extension of current computa-
tional fluid dynamics (CFD) methods, which were developed over the past thirty years
for aerospace simulations. The current generation methods are mostly 2nd-order accurate
and have achieved a level of maturity and robustness desirable for everyday deployment in
aeronautical engineering scenarios. Likewise, several complementary methods have been
developed for time integration, convergence acceleration, shock capturing and for dealing
with geometric complexities. However, there are many problems that cannot be fully
simulated using low-order methods due to their inherently higher levels of dissipation and
slower scaling of the solution accuracy with respect to mesh refinement. Moreover, high-
order methods offer the possibility to reduce simulation costs for given solution accuracy
levels, when compared to low-order schemes.

There is room for improvement in many areas for high-order methods that must be
pursued before they can compete with industrial-level CFD solvers. Computational re-
source requirements and run time are typical metrics used to classify a specific method
or a combination of methods in a CFD solver. High-order schemes must cope with im-
plicit time integration, limiters or filters and mesh manipulation techniques that also need
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to be superior, in comparison with the low-order counterparts. Therefore, a high-order
method coupled with a low-order mesh with linear elements, for instance, will degrade the
accuracy of the method near the domain boundaries. In order to overcome this problem
and to fully realize the advantages of high-order methods, a correct description of curved
boundaries is mandatory.

The objective of this work it to assess numerical diffusive flux schemes and evaluate the
impact of high-order boundaries in these simulations. The approach used was originally
developed for the discontinuous Galerkin (DG) method by Bassi and Rebay [1]. Numerical
experiments are performed on a laminar flow over a NACA0012 airfoil for validation.
Furthermore, the Radial Basis Function (RBF) technique used to generate the curved
meshes is tested for mesh movement for a heaving and pitching airfoil problem.

2 SPECTRAL DIFFERENCE METHOD FORMULATION

The flows of interest in the present work are assumed to be adequately modeled by the
2-D Navier-Stokes (NS) equations. These equations can be written in differential form as

∂Q

∂t
+
∂Ec
∂x

+
∂Fc
∂y

=
∂Ed
∂x

+
∂Fd
∂y

. (1)

The vector of conserved variables, Q, and the convective flux vectors, Ec and Fc, are given
by

Q =


ρ
ρu
ρv
e

 , Ec =
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ρu2 + p
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(e+ p)u
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ρv
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(e+ p)v

 . (2)

Here, ρ is the density, u and v are the velocity components, e is the total energy per unit
of volume and p is the pressure. The viscous flux vectors, Ed and Fd, are defined as
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(3)

where µ is the dynamic viscosity coefficient, cp is the specific heat at constant pressure
and Pr stands for the Prandtl number of the fluid. T is the local temperature of the flow.
The system is closed with the state equation for perfect gases and the ratio of specific
heats, γ, is set as 1.4 for all computations in this work.

The spectral difference (SD) method employs a finite difference-like approach. First,
in order to achieve an efficient implementation, all cells in the physical domain, (x, y), are
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transformed into unit square elements in the computational domain. Such transformation
can be written as (

x
y

)
=

K∑
s=1

Ms(ξ, η)

(
xs
ys

)
, (4)

where K is the number of points used to define the physical element, (xs, ys) are the
Cartesian coordinates of such points, and Ms(ξ, η) are the shape functions of the geomet-
ric transformation. In the case of a 1st-order linear boundary mesh, the transformation
is bilinear and the analytic expression can be easily found. However, in the case of higher
order meshes, the number of points used to define a single cell increases. Considering a
bi-polynomial representation, the transformation parameters can be calculated by numer-
ically solving a linear system of size K.

The metric terms and the Jacobian matrix of the transformation can be computed in
a pre-processing step and kept in memory in cases where the mesh is stationary. For
moving mesh problems, the transformation must be calculated for each mesh position.
The implementation follows the formulation presented in Refs. [2] and [3]. The governing
equations in the physical domain are transformed into the computation domain and they
are rewritten as

∂Q̃

∂t
+
∂Ẽc
∂ξ

+
∂F̃c
∂η

=
∂Ẽd
∂ξ

+
∂F̃d
∂η

, (5)

where Q̃ = |J |Q and J is the Jacobian matrix of the coordinate transformation, given by

J =

(
xξ xη
yξ yη

)
. (6)

For the current implementation, the flux vectors in the computational domain can be
simplified from the general form as(

Ẽe − Ẽd
F̃e − F̃d

)
=

(
xξ xη
yξ yη

)−1(
Ec(Q)− Ed(Q,∇Q)
Fc(Q)− Fd(Q,∇Q)

)
=

(
yη −xη
−yξ xξ

)(
Ec − Ed
Fc − Ed

)
.

(7)

In the standard element, two sets of points are defined, namely the solution points
(SP) and the flux points (FP). As shown in Ref. [4], the stability of the method in a
large array of problems is independent from the distribution of the SPs, meaning any
criteria may be used in order to determine the location of these points. In the present
implementation, the favored aspects are simplicity of implementation and computational
efficiency. Therefore, an internal cell discretization that only requires dealing with one-
dimensional problems is selected. The use of tensor products and the enforcement that
the directions of the interpolations and derivatives should coincide greatly simplify the
formulation of the method. An example of such distribution, for a 3rd-order SD scheme,
is illustrated in Fig. 1.
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Figure 1: Possible solution point (orange circles) and flux point (blue triangles) distributions for the
3rd-order SD method.

The number of points in a cell is determined by the order of the interpolating poly-
nomial required to achieve the desired solution accuracy. For an n-th order method, n2

SPs are required, such that, in each direction, there are n points and an n − 1 degree
polynomial can be reconstructed. The SPs are chosen to be the Gauss-Legendre points,
which are defined as the roots of the Legendre polynomial of order n shifted from the
interval [−1, 1] to [0, 1]. In order to preserve the solution accuracy, n-degree polynomials
are used to interpolate the fluxes and, hence, the n+ 1 flux points are selected to be the
Legendre-Gauss-Lobatto points, defined by the roots of the Legendre polynomial of order
n− 1 plus the end points of the interval, similarly shifted to suit the [0, 1] interval.

Using the values at the n solution points and at the (n+1) flux points, an (n−1) degree
solution polynomial and an n degree flux polynomial can be built using the following
Lagrange basis, defined as

gi(ξ) =
n∏

s=1, s 6=i

(
ξ − ξs
ξi − ξs

)
and li+ 1

2
(ξ) =

n∏
s=0, s 6=i

(
ξ − ξs+ 1

2

ξi+ 1
2
− ξs+ 1

2

)
(8)

respectively. The reconstructed solution for the conserved variables in the computational
domain is given by the tensor product of the two 1-D polynomials,

Q(ξ, η) =
n∑
i=1

n∑
j=1

Q̃i,j

|Ji,j|
gi(ξ) · gj(η) , (9)

where Q̃i,j represents the values of the conserved properties at the SPs. Similarly, the
reconstructed flux polynomials take the following form

Ẽ(ξ, η) =
n∑
i=0

n∑
j=1

Ẽi+ 1
2
,j · li+ 1

2
(ξ) · gj(η) , F̃ (ξ, η) =

n∑
i=1

n∑
j=0

F̃i,j+ 1
2
· gi(ξ) · lj+ 1

2
(η) . (10)

where Ẽi+ 1
2
,j and F̃i,j+ 1

2
are the values of the flux vectors at the corresponding FPs.
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The reconstructed variables are element-wise continuous, but discontinuous across cell
interfaces. On the internal FPs, the convective flux can be directly calculated from the
conserved variables interpolated from the SPs. However, in order to ensure stability and
conservation, a common numerical flux must be determined for both neighboring cells at
their interface FPs. This can be accomplished by the use of a Riemann solver. In the
present work, the Roe approximate Riemann solver is used as numerical flux function for
the inviscid fluxes. There is a similar problem in determining a common viscous flux at
cell interfaces which will be described in the following section.

Once the polynomial interpolation for the fluxes has been constructed, the derivatives
of the fluxes are computed at the solution points using the derivatives of the Lagrange
operators, l, as

∂Ẽ

∂ξ
=

n∑
i=0

n∑
j=1

Ẽi+ 1
2
,j · l

′

i+ 1
2
(ξ) · gj(η) ,

∂F̃

∂η
=

n∑
i=1

n∑
j=0

F̃i,j+ 1
2
· gi(ξ) · l

′

j+ 1
2
(η). (11)

With both inviscid fluxes uniquely defined at all FPs and interfaces, the flux derivatives
are computed at the solution points using the above described derivatives of the Lagrange
operators. With the gradients of the fluxes calculated on the SPs, a time-stepping method
can be invoked. The scheme implemented here is the explicit 2nd-order, 3-stage optimal
strong stability preserving Runge-Kutta scheme described in Ref. [5].

Another important aspect of high-order methods is the representation of the bound-
ary elements. The numerical tool developed for the present work considers a linear 2-D
mesh and its geometry description as inputs provided by the user. A quadratic bound-
ary representation of such input mesh is, then, created for the high-order simulations.
This procedure allows one to accurately represent a generic 2-D geometry along with an
unstructured domain discretization. Such features are necessary in order to make the
high-order scheme performance comparable, or superior, to that of low-order methods by
allowing coarser high-order meshes to be considered. Reference [6] has shown the influ-
ence of the high-order boundary treatment in 2-D inviscid simulations as it decreases the
entropy error and improves the pressure distribution along the boundaries.

3 VISCOUS FLUX DISCRETIZATION

Just as it is required for the convective fluxes to be continuous across cell interfaces, the
same condition must be enforced on the viscous fluxes in order to maintain conservation.
However, unlike the inviscid fluxes, the viscous fluxes are functions not only of the solution
but also of its gradient at a given point. Therefore, for the viscous fluxes to be equal on
both sides of a face, both variables and their gradients need to be uniquely defined at cell
interfaces.

There are several approaches to obtain these common properties and gradients, most
of which originated in a discontinuous Galerkin context. An overview in that same DG
context is given by Arnold [7]. More recently, Kannan [8] and Van den Abeele [9, 10] have
adapted some of these methods for the spectral finite volume and the spectral difference
methods. Here, we will focus on the second approach by Bassi and Rebay (BR2) [1].

5
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Firstly, it must be noted that the derivatives of the primitive properties, necessary to
calculate the viscous flux, cannot be calculated directly because the high-order polynomial
reconstruction is only valid for the conserved variables. Using basic derivation rules, the
derivatives of the primitive variables can be expressed from the derivatives of the conserved
variables as follows

u =
ρu

ρ
=⇒ ~∇u =

ρ~∇ρu− ρu~∇ρ
ρ2

=
~∇ρu− u~∇ρ

ρ
(12)

v =
ρv

ρ
=⇒ ~∇v =

ρ~∇ρv − ρv~∇ρ
ρ2

=
~∇ρv − v~∇ρ

ρ
(13)

T =
γ − 1

R

(
e

ρ
− u2 + v2

2

)
=⇒ ~∇T =

γ − 1

R

(
ρ~∇e− e~∇ρ

ρ2
− u~∇u− v~∇v

)
(14)

Depending on the diffusive flux approach, the derivatives of the conserved variables
might be calculated in two different ways. Both of them rely on using the Lagrange
derivative coefficients, the same ones used to calculate the flux derivatives, to calculate the
derivatives of the conserved variables. However, they differ on the values of the conserved
variables from which they calculate the derivatives. The first approach calculates the
gradient based on the values of the conserved properties at the FPs of the current cell,
noted as Q, and they will be called ~∇Q. the gradient can be, then, calculated as

~∇Q =


∂Q

∂ξ
∂Q

∂η

 =


n∑
i=0

n∑
j=1

Qi+ 1
2
,j · l

′

i+ 1
2
(ξ) · gj(η)

n∑
i=1

n∑
j=0

Qi,j+ 1
2
· gi(ξ) · l

′

j+ 1
2
(η)

 . (15)

A second method calculates the gradient using the same coefficients, but replacing Q
with Q̂ at face FPs, where Q̂ is the average of the vector of conserved properties at the
interface. This new solution polynomial is called Q̆ and, therefore, its gradient will be
referred as ~∇Q̆. The gradient can be written as

~∇Q̆ =


∂Q̆

∂ξ
∂Q̆

∂η

 =


n∑
i=0

n∑
j=1

Q̆i+ 1
2
,j · l

′

i+ 1
2
(ξ) · gj(η)

n∑
i=1

n∑
j=0

Q̆i,j+ 1
2
· gi(ξ) · l

′

j+ 1
2
(η)

 . (16)

The main difference between these two methods is that the first one results in a compact
viscous flux calculation, while neighboring cell solutions are required to calculate the local
gradients with the second approach. Furthermore, the averaging of the solutions does
not guarantee the continuity of the gradients across cell interfaces. Therefore, gradients
must be subjected to another procedure to ensure they are uniquely defined. Hence, the
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common gradient at one face depends on the gradients calculated at the left and right cells,
which might also depend on all the neighbors of these cells, generating an inconveniently
large stencil for parallel computation. At internal FPs, however, these issues do not arise
and any one of the two methods might be used at a similar computational cost.

In the BR2 approach, first presented by Bassi and Rebay in Ref. [1], the value of the
conserved variables at the interface is still calculated as a simple average of the left and
right values,

Q̂ =
1

2
(QL +QR) . (17)

The common gradient, however, is evaluated as an average of corrected left and right
gradients. The correction imposed to these gradients makes them equivalent to calculating
them using Q on all FPs, including interface FPs, except for the FPs at the face where
the gradient is being evaluated. Due to the linearity of the derivative operator, these
corrected gradients can be efficiently calculated simply by adding a function ~Λ to ~∇Q.
Here, ~Λ is the gradient of a polynomial ∆Q defined as QL−QR at the FPs on the current
face and 0 on all other FPs. Finally, the common gradient can, then, be written as

~̂∇Q =
(~∇QL − ~ΛL) + (~∇QR − ~ΛR)

2
, (18)

where correction operators are defined by the following expression

~Λ =


∂Q

∂ξ
∂Q

∂η

 =


n∑
i=0

n∑
j=1

∆Qi+ 1
2
,j · l

′

i+ 1
2
(ξ) · gj(η)

n∑
i=1

n∑
j=0

∆Qi,j+ 1
2
· gi(ξ) · l

′

j+ 1
2
(η)

 . (19)

It should be noted that, because ∆Q is 0 on almost all FPs, the calculation of ~Λ consists
of only one multiplication per FP in which ∆Q is not 0.

4 RESULTS

4.1 Laminar flow over a NACA 0012 airfoil

A study considering viscous flow around a NACA 0012 airfoil is performed in order
to validate the results obtained from the previous methodology. An unstructured mesh
composed by quadrilaterals is used to represent the airfoil, as observed in Fig. 2. The
flow solution is performed at Mach number 0.6 and Reynolds number 1000, based on the
airfoil chord, for an angle of attack of α = 0 deg. The calculations are performed with
with a 3rd order (P2) method. The Mach number contours for this test case are shown in
Fig. 3. The results were calculated with two different meshes. Hence, Fig. 3(a) presents
the Mach number contours for the calculations with a linear mesh (Q1), whereas Fig. 3(b)
presents the results for the calculations with a quadratic mesh (Q2). The basic features
of the flow are clearly captured, namely the development of the boundary layer over the
airfoil, followed by a wake behind it.
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Figure 2: NACA 0012 airfoil mesh.

(a) Linear mesh results (b) Second order mesh results.

Figure 3: Mach contours for a P2 spectral difference solution over a NACA 0012 airfoil.

A more detail analysis of the results, however, looking at pressure coefficient distribu-
tions over the airfoil surface, which are shown in Fig. 4, reveals that there is a noticeable
mesh effect. The higher order mesh representation, with the Cp results shown in Fig.
4(b), allows the capture of equal values of Cp on the upper and lower surfaces of the
airfoil, which is the expected result for a symmetric airfoil at zero angle of attack. On the
other hand, calculations with the Q1 mesh yield differences in the pressure coefficient dis-
tribution between upper and lower surfaces of the airfoil. Moreover, one can also observe
some small oscillations in the Cp distributions, both upper and lower surfaces, for the
results with the linear mesh. The results for the Q2 mesh do not have such oscillations.
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(a) Linear mesh results.
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(b) Second-order mesh results.

Figure 4: Pressure coefficient distributions calculated with 3rd-order method using linear and quadratic
meshes (M∞ = 0.6, Re = 1000, α = 0 deg).

4.2 Heaving and pitching airfoil movement

Unsteady aerodynamic simulations can be performed with the capability presnetly
available in the code and some test cases are the subject of future efforts. A test case that
considers a heaving and pitching airfoil is described in the 4th International Workshop on
High-Order CFD Methods [11]. This problem is used to test the accuracy and performance
of high-order flow solver for problems with deforming domains and, hence, it is suitable
to validate the contributions of the present work. In particular, the test case consists of a
NACA 0012 airfoil undergoing a smooth flapping-type motion, that is, a pitching motion
along with a vertical displacement from rest up to a position one chord length higher. The
flapping motion is performed for the total time of 2 dimensionless time units, by heaving
and pitching the airfoil about a point located at 1/3 of the airfoil chord, as depicted in
Fig. 5.

Figure 5: Definition of parameters for airfoil motion.
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Table 1: Motion description for the pitching and heaving airfoil.

Case 1 - Pure heaving Case 2 - Flow aligning Case 3 - Energy extraction
h(t) = b2(t) h(t) = b2(t) h(t) = b3(t)
θ(t) = 0 θ(t)= A2 · b1(t) θ(t)= A3 · b1(t)

The motion details are included in Table 1, where A2 = 60π/180 and A3 = 80π/180.
Moreover, the motion is defined by the following expressions

b1 = t2(t2 − 4t+ 4) , (20)

b2 = t2
(3− t)

4
, (21)

b3 = t3
(−8t3 + 51t2 − 111t+ 84)

16
, (22)

where h(t) is the vertical displacement and θ(t) represents the pitching angle.
If one considers the angular displacement in cases 2 and 3, it is clear that b1 = 1 when

t = 1 and, when t = 2, b1 = 0. Hence, the angular excursion of the airfoil starts at 0 deg.,
at t = 0, goes up to A2 = 60 deg., or A3 = 80 deg., depending on the test case, and finally
returns to 0 deg. The heaving, though, is a single movement growing monotonically from
0 to 1 chord units for cases 1 and 2. For the last case, case 3, however, the movement still
ranges from 0 to 1 chord units, but in a non-monotonic manner.

Some of the mesh movement results of interest for the NACA 0012 airfoil are presented
in Fig. 6. Figure 6(a) shows the NACA 0012 airfoil at its initial configuration, for which
the computational mesh is generated, whereas Fig. 6(b) presents the mesh at time t = 1
time units for the excursion previously described of case 3, i.e., for an angle of attack
θ = 80 deg. The mesh is moved in the present study using the concept of radial basis

(a) Original NACA 0012 mesh.

XZ

Y

(b) NACA 0012 mesh after airfoil rotated by 80 deg.

Figure 6: Mesh movement via RBF for the NACA 0012 airfoil grid.

functions (RBFs) [12]. For this case, the mesh experiences a severe deformation. However,
it is possible to observe in Fig. 7 that the mesh is still valid in the sense that there are no
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intersecting edges even at the most problematic locations, i.e., at the trailing and leading
edges of the airfoil.

Z

Y

X

(a) NACA 0012 leading edge close-up view.

XZ

Y

(b) NACA 0012 trailing edge close-up view.

Figure 7: Assessment of cell validity after airfoil is rotated by 80 deg.

5 CONCLUDING REMARKS

The results obtained so far have demonstrated the capability of the radial basis function
(RBF) technique to properly handle tangled and improper cells near the boundary, when
a curving strategy is applied to the mesh. Furthermore, viscous simulations have been
carried out with appropriate curved meshes and comparisons with their low order mesh
counterparts have demonstrated the effectiveness of high-order meshes for viscous flows.
Moreover, the RBF technique proved capable of handling the desired very large mesh
displacements for the unsteady airfoil motion test cases.
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Fábio M. Moreira, André R. B. Aguiar and João Luiz F. Azevedo

[2] Wang, Z.J., Liu, Y., May, G., and Jameson, A., Spectral Difference Method for
Unstructured Grids II: Extension to the Euler Equations, Journal of Scientific Com-
puting, Vol. 32, No. 1, July 2007, pp. 3938–3956.

[3] May, G. and Jameson, A., A Spectral Difference Method for the Euler and Navier-
Stokes Equations on Unstructured Meshes, 44th AIAA Aerospace Sciences Meeting,
Reno, NV, Jan. 2006.

[4] Van den Abeele, K., Lacor, C., and Wang, Z.J., On the Stability and Accuracy of the
Spectral Difference Method, Journal of Scientific Computing, Vol. 37, No. 2, Nov.
2008, pp. 162–188.

[5] Spitieri, R.J. and Ruuth, S.J., A New Class of Optimal High-Order Strong-Stability-
Preserving Time Discretization Methods, SIAM Journal on Numerical Analysis, Vol.
40, No. 2, 2003, pp. 469–491.

[6] Moreira, F.M., Jourdan, E., Breviglieri, C., Aguiar, A.R.B., and Azevedo, J.L.F.,
Implicit Spectral Difference Method Solutions for Compressible Flows Considering
High-Order Meshes, AIAA Paper No. 2016-3352, Proceedings of the 46th AIAA Fluid
Dynamics Conference, Washington, DC, June 2016.

[7] Arnold, D.N., Brezzi, F., Cockburn, B., and Marini, L.D., Unified Analysis of Dis-
continuous Galerkin Methods for Elliptic Problems, SIAM J. Numer. Anal., Vol. 39,
No. 5, May 2001, pp. 1749–1779.

[8] Kannan, R., High Order Spectral Volume and Spectral Difference Methods on Un-
structured Grids, Ph.D. Thesis, Iowa State University, Ames, Iowa, 2008.

[9] Van den Abeele, K., Development of High-Order Accurate Schemes for Unstructured
Grids, Ph.D. Thesis, Vrije Universiteit Brussels, Brussels, Belgium, 2009.

[10] Van den Abeele, K., Parsani, M., and Lacor, C., An Implicit Spectral Difference
Navier-Stokes Solver for Unstructured Hexahedral Grids, AIAA Paper No. 2009-
0181, Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New
Horizons Forum and Aerospace Exposition, Orlando, FL, Jan. 2009.

[11] Wang, Z.J., Cagnone, J.S., Careni, D., de Wiart, C.C., Couaillier, V., Fidkowski, C.,
Galbraith, M., Hartman, R., Ollivier-Gooch, C., Persson, P.O., Hillewaert, K., Eka-
terinaris, J., Huynh, H.T., Kroll, N., and Vincent, P., HiOCFD4 – 4th International
Workshop on High-Order CFD Methods, 2015, https://how4.cenaero.be.

[12] Aguiar, A.R.B., Breviglieri, C., Santos, T.M., Azevedo. J.L.F., and Wang, Z.J.,
High-Order Meshes for Flow Simulations with a Spectral Difference Method, AIAA
Paper No. 2017-4294, Proceedings of the 23rd AIAA Computational Fluid Dynamics
Conference, Denver, CO, June 2017.

12


