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Abstract. This work presents a technique for simulating time-dependent axisymmetric
free surface flows of Oldroyd-B fluids that is capable of solving the Oldroyd-B model for
any value of the ratio β = λ2/λ1, in the interval [0, 1]. Thus, it can solve the purely
elastic UCM model when β = 0 and reduces to Newtonian flow if β = 1. We employ the
EVSS transformation τ = S + 2η0D where the extra-stress tensor τ is the solution of
the Oldroyd-B constitutive equation while the non-Newtonian tensor S is calculated as
a function of τ and 2η0D. The Oldroyd-B tensor is related to the conformation tensor
A which is approximated implicitly by a system of finite difference equations that is
solved exactly. The methodology developed is a Marker-and-Cell type method that uses
a staggered grid and solves the momentum equations using primitive variables and a
discrete non-symmetric Poisson equation to obtain a divergence-free velocity field and the
pressure within the fluid and on the free surface. To verify this new technique, tube flow
is solved and the numerical predictions are compared with the analytical solution for fully
developed flow; the convergence of the method is demonstrated via mesh refinement. The
performance of this method is demonstrated by solving the impacting drop problem for
which a study of the parameters involved is provided and new phenomena are reported.

1 INTRODUCTION

The importance of non-Newtonian free surface flows in industrial processes has at-
tracted the attention of many scientists. Examples of such applications include polymer
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processing in the plastic industry such as mold filling of complex cavities and filling of
containers with viscoelastic fluids. These flows are represented by a system of nonlinear
equations and the presence of moving free surfaces makes difficult to solve the correspond-
ing governing equations and the associated boundary conditions using a computer code.
An extra challenge comes from the fact that a unique constitutive equation can not model
polymers in general. Indeed, a great number of differential constitutive equations that can
accurately represent viscoelastic fluids have been developed over the past decades, as for
example, Upper-Convected-Maxwell (UCM) [1], OLDROYD-B [2], Phan-Thien-Tanner
(PTT) [3], Giesekus [4], various FENE type models [5], Extended Pom-Pom (Pom-Pom)
[6, 7], among others. Apart from these differential models, integral constitutive equa-
tions have also been employed to simulate viscoelastic free surface flows [8, 9]. These are
more advanced models that require sophisticated approaches to compute the solution of
the integral-differential system of equations involved and for this reason, most numerical
methods for solving viscoelastic flows employ differential constitutive equations. In par-
ticular, the differential form of the Upper-Convected-Maxwell (UCM) and the Oldroyd-B
models have been extensively studied over the past decades. Numerical investigations of
viscoelastic free surface flows modeled by these models using, for instance, finite element,
finite volume and finite difference methods can be found in the following works [1, 10]–[23]

In this work, we present a new finite difference methodology to solve the governing
equations for axisymmetric free surface flows governed by the Oldroyd-B model. The free
surface of the fluid is dealt with a modified Marker-and-Cell method presented by Tomé
et al. [16]. This new methodology is verified by solving fully developed tube flow together
with mesh refinement studies. To demonstrate the capabilities of this new methodology
in solving time-dependent free surface flows, the impacting drop problem of Oldroyd-B
and UCM fluids is simulated.

2 GOVERNING EQUATIONS

The mass conservation and momentum equations are the basic equations for incom-
pressible flows which can be written as,

∇ · v = 0 , (1)

ρ
[∂v

∂t
+∇ · (vv)

]
= −∇p+∇ · τ + ρg , (2)

where v is the velocity vector, p is the scalar pressure, g is the acceleration of gravity
vector, ρ is the density of the fluid and τ is the extra-stress tensor.

We are interested in flows governed by the Oldroyd-B rheological constitutive equation
that can be expressed by the following equation

τ + λ1
∇
τ = 2η0

[
D + λ2

∇
D

]
, D =

1

2

[
(∇v) + (∇v)T

]
, (3)

where D is the rate-of-deformation tensor. The symbol
5
τ represents the upper-convected

derivative given by
O
τ =

∂τ

∂t
+∇ · (vτ )−

(
∇v
)
τ − τ

(
∇v
)T
.

2
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In Eq. (3), λ1 is the relaxation time, λ2 = λ1
ηS
η0

is the retardation time, η0 = ηP + ηS

is the sum of solvent (ηS) and polymeric (ηP ) viscosities. The ratio β =
ηS
η0

measures

the quantity of solvent viscosity within the fluid. When β = 0, Eq. (3) reduces to the
Upper-Convected Maxwell (UCM) model and if β = 1 we have Newtonian flow.

In this work, the extra-stress tensor τ is related to the conformation tensor A by

τ =
η0
λ1

(
1− β

)(
A− I

)
+ 2βη0 D , (4)

where the conformation tensor A is evolved in time by solving

A + λ1
∇
A = I . (5)

To solve the momentum equation (2), we employ the following transformation (known
as EVSS [22])

τ = S + 2η0D , (6)

which after being introduced in the momentum equation (2) provides

ρ
[∂v

∂t
+∇ · (vv)

]
= −∇p+ η0∇2v +∇ · S + ρg . (7)

In this work, we propose a method that is able to obtain results for an value of β ∈
[0 , 1]. This method consists of calculating the extra-stress τ using the conformation
tensor A and then obtaining the non-Newtonian tensor S as a function of τ and D.
Details of this technique are presented in the next Section.

2.1 Boundary conditions

The boundary conditions can be summarized as follows: on rigid boundaries the no-slip
condition is imposed; on inflows, the velocity is prescribed while the extra-stress tensor
obeys fully developed flow (details are given in Section 4). On outflows, homogeneous
Neumann conditions are imposed for the velocity field. On the free surface, in the absence
of surface tension, the boundary conditions are given by equations

nT · (σ · n) = 0 , mT · (σ · n) = 0 , (8)

where, σ = −pI + S + 2η0D is the stress tensor and n and m are unity vectors normal
and tangential to the free surface, respectively.

3 NUMERICAL METHOD

The equations presented in Section 2, which are specified in Section 3.1, are solved by
the finite difference method on a staggered grid (Fig. 1a displays the locations of the
variables in a cell). The fluid (also the free surface) is modeled by an improved Marker-
and-Cell method developed by Tomé et al. [17] wherein the fluid surface is determined

3
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by a closed linear spline that is defined by marker-particles (see Fig. 1b). To implement
this technique it is necessary to divide the cells within the mesh to into several types as
follows (see Fig. 1c):
I Rigid boundary (B): cells that define the location of rigid contours;
I Inflow boundary (I): cells that model ‘fluid entrances’ (‘inflows’);
I Outflow boundary (O): cells that define ‘fluid exits’ (‘outflows’);
I Empty cells (E): cells that do not contain fluid;
I Full cells (F): cells that contain fluid and have no contact with E-faces;
I Surface cells (S): cells that contain fluid and have at least one face in contact with
E-faces.

3.1 Numerical algorithm

Equations (1), (7), (4), (5) and (6), written in cylindrical coordinates, are solved for
the unknowns u(r, z, t), w(r, z, t), p(r, z, t), S(r, z, t), τ (r, z, t) and A(r, z, t), as follows.
These equations are used in dimensionless form and contain the nondimensional numbers

Re =
ρ0 U L

η0
(Reynolds number), Wi = λ1

U

L
(Weissenberg number) and Fr =

U√
Lg

(Froude number), in which L and U are typical scales for velocity and length, respectively,
ρ0 is the fluid density and g is the acceleration of gravity (for details see [16]).

The computational cycle is performed in three steps, as follows:
STEP1: Calculation of vn+1 = v(r, z, tn+1) and pn+1 = p(r, z, tn+1)

The algorithm for calculating vn+1 and pn+1 employs some ideas of the technique
presented by Tomé et al. [16] that is briefly described next.

The pressure field is uncoupled from the mass (1) and momentum (7) equations by
using the projection method of Chorin [24].
Let δt be the time step used, tn+1 = tn+δt, and vn = v(r, z, tn), τ n = τ (r, z, tn) be known

at time tn. First, define Dn =
1

2

[
(∇vn) + (∇vn)T

]
, An = I +

ReWi

1− β
τ n − 2Wi

β

1− β
Dn

and Sn = τ n − 2

Re
Dn. A tentative velocity field ṽn+1 is then calculated by the implicit

Euler method applied to the momentum equation by solving

ṽn+1 − vn

δt
+∇ · (vv)n = −∇pn +

1

Re
∇2ṽn+1 +∇ · Sn +

1

Fr2
g . (9)

It can be shown [25] that this velocity field contains the correct vorticity at time t but it
does not conserve mass in general. Thus, a potential function ψ(r, z, tn+1) is computed
such that

∇2ψn+1 = ∇ · ṽn+1 . (10)

The final velocity field vn+1 is calculated from,

vn+1 = ṽn+1 −∇ψn+1 . (11)

Therefore, vn+1 conserves mass and the vorticity remains unchanged.

4
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In this work, we use some concepts of the implicit technique of Oishi et al. [13] that
couples the boundary condition for the pressure on the free surface given by Eq. (8)
and the mass conservation equation Eq. (1). This technique consists of applying the
mass conservation equation together with the pressure condition on the free surface and
the equation for the velocity vn+1 on surface cells. By doing this, new equations for the
potential function ψn+1 are derived and added to the set of equations originated by the
discrete version of the Poisson equation Eq. (10), resulting in an asymmetric linear system
that is solved by the Bi-conjugate gradient method. After obtaining ψn+1, the pressure is
calculated by

pn+1 = pn +
ψ

δt
. (12)

(a) (b) (c)

Figure 1: (a) Description of the cell employed in the mesh, (b) Representation of fluid free surface (line
connecting the particles) and volume of fluid (yellow area), (c) Type of cells in the domain.

STEP2: Calculation of τ n+1 = τ (r, z, tn+1), An+1 = A(r, z, tn+1) and Sn+1 = S(r, z, tn+1)
In this step we first calculate the conformation tensor An+1 = A(r, z, tn+1) by solving

Eq. (5) using finite differences. Equation (5) is solved implicitly by the equation

An+1 −An

δt
− (∇vn+1)TAn+1 −An+1(vn+1) +

1

Wi
An+1 = −∇ · (vn+1An) +

1

Wi
I. (13)

By writing this equation in component form, the following 4× 4 linear system
a11 0 0 a14
0 a22 0 0
0 0 a33 a34
a41 0 a43 a44



Arr

Aθθ

Azz

Arz


n+1

=


F1

F2

F3

F4

 , (14)

is obtained and has to be solved for each cell in the mesh. The matrix coefficients and
the right hand side of this linear system are given by
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a11 = 1.0 +
δt

Wi
− 2δt

∂un+1

∂r
, a14 = −2δt

∂un+1

∂z
,

a22 = 1.0 +
δt

Wi
− 2δt

un+1

r
, a33 = 1.0 +

δt

Wi
− 2δt

∂wn+1

∂z
,

a34 = −2δt
∂wn+1

∂r
, a41 = −δt∂w

n+1

∂r
,

a44 = 1.0 +
δt

Wi
− 2δt

(∂wn+1

∂z
+
∂un+1

∂r

)
, a43 = −δt∂u

n+1

∂z
,

(15)

F1 = (Arr)n + δt

[
1

Wi
− 1

r

∂(run+1(Arr)n)

∂r
+
∂(wn+1(Arr)n)

∂z

]
,

F2 = (Aθθ)n + δt

[
1

Wi
− 1

r

∂(run+1(Aθθ)n)

∂r
+
∂(wn+1(Aθθ)n)

∂z

]
,

F3 = (Azz)n + δt

[
1

Wi
− 1

r

∂(run+1(Azz)n)

∂r
+
∂(wn+1(Azz)n)

∂z

]
,

F4 = (Arz)n + δt

[
1

Wi
− 1

r

∂(run+1(Arz)n)

∂r
+
∂(wn+1(Arz)n)

∂z

]
.

(16)

The derivatives in Eq. (15) are approximated by second order finite differences while
the convective terms in Eq. (16) are calculated by the high order stable upwind method
CUBISTA [15]. The use of this high order bounded upwind method and small time-steps
provide accurate solution for the conformation tensor A. The solution of the system (14)
is obtained analytically by

[Aθθ]n+1 =
F2

a22
, [Arz]n+1 =

F4 − a41
a11
F1 − a43

a33
F3

a44 − a41
a11
a14 − a43

a33
a34

,

[Arr]n+1 =
1

a11

[
F1 − a14[Arz]n+1

]
, [Azz]n+1 =

1

a33

[
F3 − a34[Arz]n+1

]
.

(17)

Therefore, the tensor τ n+1 is given by

τ n+1 =
1

ReWi

(
1− β

)(
An+1 − I

)
+

2

Re
βDn+1 , (18)

and the non-Newtonian tensor Sn+1 is computed from

Sn+1 = τ n+1 − 2

Re
Dn+1 . (19)

STEP3: The last step in the calculational cycle is to move the marker-particles to their
new positions by solving

dr

dt

∣∣∣
P

= u(r, z)n+1
P ;

dz

dt

∣∣∣
P

= w(r, z)n+1
P , (20)

for each particle P = [rP zP]T . The particle velocity VP = [u(r, z)n+1
P v(r, z)n+1

P ]T is found
by a bilinear interpolation using the nearest velocities. For details see Tomé et al. [16].
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4 VERIFICATION RESULTS

To verify the numerical method described in Section 3, fully developed Poiseuille flow
in a tube was simulated and the numerical predictions were compared with the analytic
solutions.

A tube of radius R = 1.0 m and length H = 10Rm composed the computational
domain Ω = [0 , R] × [0 , 10R] as illustrated in Fig. 2b. The tube was empty and fluid
was injected at the inflow with the imposition of the following fully developed profile:

w(r) =
(
1− r2

)
, u(r) = 0, γ̇ =

dw

dr
= −2r,

τ zz(r) =
2

Re
Wi
(
1− β

)
γ̇2, τ rz(r) =

1

Re
γ̇, τ rr(r) = τ θθ(r) = 0.

(21)

The input data were: L = R = 1m, U = 1ms−1, ρ = 1000kg m−3, η0 = 4.0Pa.s, λ1 = 1.0s

and λ2 = 0.2s (β = 0.2). Therefore, Re =
ρ U L

η0
= 0.25 and Wi = λ1

U

L
= 1.0. By using

the meshes presented on Table 1, this problem was simulated until time t(U/L) = 100.0
on each mesh.

(a) (b)

Figure 2: Description of flow domain (a) and computational domain (b).

Table 1: Meshes used to simulate tube flow.

Mesh M10 M20 M30
δr = δz 0.1000 0.0500 0.0333

Cells in the mesh (10×100) (20×200) (30×300)

Fig. 3 displays the numerical solutions obtained for w(r, zm), τ zz(r, zm) and τ rz(r, zm).
These solutions are plotted at the middle of the tube at zm = 0.5H. For comparisons, the
analytic solutions are also plotted in Fig. 3. It can be seen that the numerical solutions
agree well with the corresponding solutions on the meshes employed. Moreover, Table
2 shows that the errors calculated with the norm defined by Eq. (22) decay with mesh

7



Caroline Viezel, Murilo F. Tomé, Fernando T. Pinho and Sean McKee

refinement and the calculated convergence orders are about two. This is in accordance
with the second-order finite difference approximations employed to solve the equations.

E(·) =
√
h
∑[

(·)analytic − (·)numerical
]2
, h = δr = δz, (22)
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(a)
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(c)

Figure 3: Comparison of (a) w(r); (b) τzz(r) and (c) τ rz(r) obtained on meshes M10, M20 and M30
with the respective analytic solution of Poiseuille flow.

Table 2: Errors between analytic and numerical solutions calculated on meshes M10, M20, M30.

Errors Orders

Mesh M10 M20 M30 O(M10,M20) O(M20,M30)
w(r, zm) 1.683826e-03 4.260340e-04 1.898501e-04 1.982703 1.993475
τ rz(r, zm) 2.280432e-02 5.749979e-03 2.559584e-03 1.987679 1.99611
τ zz(r, zm) 1.124021e-01 2.845901e-02 1.267881e-02 1.981711 1.994088

5 Simulation of drop impacting

We simulated the time-dependent deformation of a spherical drop containing an Oldroyd-
B fluid after it impacted a rigid disk. This problem was chosen to establish our method on
complicated time-dependent free surface flows. Moreover, it is usually employed to test
the efficiency of numerical algorithms on problems having large free surface deformations
and a comparison with solutions obtained by other techniques can be effected.

We considered a drop of diameter d = 2R that is positioned above a circular disk at a
height H (see Fig. 4b). At t = 0 the drop starts flowing downwards with initial velocity
w(r, z, 0) = −U . After the drop impacts the disk it starts to flow radially expanding its
diameter d(t) while, after a short period of time, due to elasticity forces, it is expected
that it will contract, decreasing its diameter d(t). We are interest to study the effects of
the parameters Wi and β on the variation of the drop diameter d(t) with time.

8
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(a) (b)

Figure 4: Simulation of drop impacting. (a) 3D view of initial state; (b) Computational domain em-
ployed.

Table 3: Input data (SI units) used in the impacting drop simulation.

d = 2R
[m]

H
[m]

U
[m−1]

λ
[s]

η0
[Pa.s]

ρ
[kg m−3]

g
[ms−2]

Fr

0.02 0.04 1.0 0.02 4.0 1000.0 -9.81 2.2576

Table 4: Meshes employed in the simulation of drop impacting.

Mesh M10 M16 M20 M30 M40
spacing (h/d) 0.050000 0.031250 0.025000 0.016666 0.012500

5.1 Verification results

To verify our code, we performed a mesh refinement followed by comparisons with
results from other investigators. The data used in these simulations were Re = 5, Wi =
1.0, β = 0.1 together with the data from Table 3 and carried out simulations until time
t∗(U/d) = 5.0 employing the meshes defined in Table 4. The results obtained are displayed
in Fig. 5a where it can be seen that the solutions on the coarser meshes converge to those
on the finest mesh (M40). Moreover, Fig. 5b presents a comparison of d(t) with the
results obtained by Figueiredo et al. [19], Xu et al. [20] and OpenFOAM [21]. It can
be observed that the time evolution of d(t) obtained by our code agrees well with the
results of Figueiredo et al., Xu et al. and the OpenFOAM code. These results verifies the
proposed new method on this particular unsteady free surface flow.

5.2 Simulation of drop impacting

To demonstrate the capabilities of this new technique in simulating time-dependent
viscoeslastic free surface flows, the input data displayed in Table 3 and mesh M40 were
employed to simulate the impacting drop problem varying the parameters: β and Wi.
Firstly, we used Re = 5 and Wi = 1 and simulated the drop impacting for the following
values of β : 0, 0.001, 0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 0.9. The Newtonian flow corresponding
to β = 1 was also simulated for reference. These simulations were performed until the
nondimensional time t ∗ (U/d) = 20.

9
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Figure 6a displays the time history of d(t) for each value of β. We can observe that the
results with β = 0.9 are similar to the Newtonian drop and show that after the drop im-
pacted the disk, at time t ≈ 1.4, it continued to flow radially over the time, monotonically
increasing d(t). The results with β = 0.7, 0.5, 0.3 display a small expansion/contraction
of the drop that occurred at times t ≈ 1.4 and t ≈ 2.4, respectively. It is seen that, after
the contraction, the drop flowed radially, monotonically increasing d(t), similar to the
Newtonian drop. For β = 0.1, 0.02, 0.01, 0.001, the behaviour of d(t) is more impressive.
The higher elasticity within the drop makes it to expand/contract twice. These expan-
sions/contractions become stronger as the value of β is reduced and for β = 0.001, the
diameter d(t) is about the same as that obtained with the UCM model (β = 0). This is
in agreement with the Oldroyd-B model as it reduces to the UCM model when β = 0.

To observe the effect of a high Weissenberg number on the spreading of the drop, several
simulations using Re = 5.0, Wi = 20 and β = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 were performed.
The evolutions of d(t) obtained in these simulations are displayed in Fig. 6b for each value
of β. It is seen that, after the drop impacted the disk, the values of d(t) corresponding to
β = 0.9, 0.7, 0.5, 0.3 increase monotonically in time and do not present any contraction.
However, for β = 0.1, 0.01 the diameter d(t) presents large expansions, namely, d(t) > 2.5d
for β = 0.01 and d(t) > 2d at β = 0.1. An interesting point is that for these values of β
the diameter of the drop contracted to the same value of d(t) ≈ 0.04 = 2d.

To show that the surface of the drop undergoes large deformations during the free
surface flow, Fig. 7 displays a three-dimensional view of the unsteady flow of the drop
over the disk for Re = 5, β = 0.01 and Wi = 1, 20. We can observe that the drop, with
Wi = 1 (see the left column with 3D visualisations), initially expands until time t = 2.6
and from this time it retains contracting up to the time of t = 3.4 when an elevation
at the centre of the drop can be seen (see the associated 3D view). After this time, the
drop again starts to expand, making its centre to undergo a depression at t ≈ 3.8 (see the
associated 3D view) and at a later time t = 4.6, due to a contraction, a small elevation
occurs at the centre of the drop. After this time the velocities within the drop became
small and the drop surface did not present any change. We believe that the effects of
expansion/contraction are due to elastic forces acting within the drop.

The results obtained with Wi = 20 are more dramatic. The high elasticity of the fluid
provides more momentum to the drop so that its spreading is much more accentuated. It
is seen that after the maximum spread, at time t = 3.1, there is a thin layer of fluid over
the disk that is affected by elastic forces making the drop to contract until time t = 5.3
when a small jet emerges from the drop. Afterwards, the drop starts to expand again
spreading over the disk.

6 CONCLUSIONS

This work presented a novel numerical algorithm to solve the Oldroyd-B model for
free surface flows. The main feature of the formulation employed to solve the governing
equations is the application of a splitting transformation that avoided the appearance of
the viscosity ratio β in the momentum equations. The solution of the Oldroyd-B con-
stitutive equation was obtained in terms of the conformation tensor A that was solved

10
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implicitly. The method was verified against fully developed tube flow of Oldroyd-B flu-
ids and convergence results were provided. The efficiency of this new methodology on
unsteady free surface flow was attested by simulating the impacting drop problem for
which mesh refinement and comparison with results from the literature were performed.
The proposed method can easily be extended to three-dimensional flows and be used to
solve any viscoelastic flow where the usual rheological splitting of the extra-stress tensor
is employed.
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Figure 5: Simulation of a drop impacting a disk - Re = 5, Wi = 1, β = 0.1. (a) Mesh refinement; (b)
Comparison with other investigators. Our results were obtained on mesh M40.
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Figure 6: Simulation of drop impacting a disk with Re = 5 and variation of β: (a) Wi = 1, (b) Wi = 20.
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Caroline Viezel, Murilo F. Tomé, Fernando T. Pinho and Sean McKee

t = 2.2

t = 2.6

t = 3.1

t = 3.4

t = 3.8

t = 4.6

t = 5.3

t = 6.0

t = 7.5

t = 10.0

Figure 7: Simulation of a drop spreading over a disk - Re = 5, β = 0.01 and Wi = 1, 20, at selected
times (from top to bottom) t ∗ (U/d) = 2.2, 2.6, 3.1, 3.8, 4.6, 5.3, 6.0, 7.5, 10.0. 2D plots on the right and
left sides display the u-velocity where the blue colour refers to negative values and the red colour stands
for positive values.
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Caroline Viezel, Murilo F. Tomé, Fernando T. Pinho and Sean McKee

REFERENCES

[1] R. G. Owens, T. N. Phillips, (2002). Computational Rheology. Imperial College Press.
ISBN 978-1-86094-186-3.

[2] Oldroyd, James Clerk , On the Formulation of Rheological Equations of Estate,
Proceedings of the Royal Society of London, Series A, Mathematical and Physical
Sciences, 200 (1950) (1063): 523-541.

[3] R. I. Tanner, A theory of die-swell, Journal of Polymer Science, 8 (1970), 2067-2078.

[4] H. Giesekus, A simple constitutive equation for polymer fluids based on the con-
cept of deformation-dependent tensorial mobility, Journal of Non-Newtonian Fluid
Mechanics, 11 (1982), 69-109.

[5] R. B. Bird , R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 2,
Wiley, New York, 1987.

[6] T. C. B. McLeish, R. G. Larson, Molecular constitutive equations for a class of
branched polymers: The pom-pom polymer, Journal of Rheology, 42 (1998), 81-

[7] W. M. H. Verbeeten, G. W. M. Peters, F. P. T. Baaijens, Differential constitutive
equations for polymer melts: the extended Pom-Pom model, Journal of Rheology,
45 (2001), 823-843.

[8] A. C. Papanastasiou, L. E. Scriven, C. W. Macosko, An integral constitutive equation
for mixed flows: viscoelastic characterization, Journal of Rheology, 27 (1983), 387-
410.

[9] X. L. Luo, E. Mitsoulis, An efficient algorithm for strain history tracking in finite
element computations of non-Newtonian fluids with integral constitutive equations,
International Journal for Numerical Methods in Fluids, 11 (1990), 1015-1031.

[10] M. J. Crochet, R. Keunings, Die swell of a Maxwell fluid: numerical prediction,
Journal of Non-Newtonian Fluid Mechanics, 7 (1980), 199-212.

[11] M. J. Crochet, R. Keunings, Finite element analysis of die swell of a highly elastic
fluid, Journal of Non-Newtonian Fluid Mechanics 10 (1982), 339-356.

[12] V. Delvaux, M. J. Crochet, Numerical simulation of delayed die swell, Rheologica
Acta, 29 (1990), 1-10.
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